Final Thesis

Meta-Model Guided Error Correction for UML Models

by

Fredrik Biackstrom and Anders Ivarsson
LITH-IDA-EX--06/079--SE

2006-12-13

Final Thesis

Meta-Model Guided Error Correction for UML Models

by

Fredrik Bickstrom and Anders Ivarsson

LITH-IDA-EX--06/079--SE

Supervisor: Asa Detterfelt
Attentec AB

Examiner: Peter Bunus
Dept. of Computer and Information Science
at Linkoping University

Abstract

Modeling is a complex process which is quite hard to do in a structured
and controlled way. Many companies provide a set of guidelines for model
structure, naming conventions and other modeling rules. Using meta-models
to describe these guidelines makes it possible to check whether an UML model
follows the guidelines or not. Providing this error checking of UML models is
only one step on the way to making modeling software an even more valuable
and powerful tool.

Moreover, by providing correction suggestions and automatic correction
of these errors, we try to give the modeler as much help as possible in creating
correct UML models.

Since the area of model correction based on meta-models has not been
researched earlier, we have taken an explorative approach. The aim of the
project is to create an extension of the program MetaModelAgent, by Ob-
jektfabriken, which is a meta-modeling plug-in for IBM Rational Software
Architect.

The thesis shows that error correction of UML models based on meta-
models is a possible way to provide automatic checking of modeling guide-
lines. The developed prototype is able to give correction suggestions and
automatic correction for many types of errors that can occur in a model.

The results imply that meta-model guided error correction techniques
should be further researched and developed to enhance the functionality of
existing modeling software.

Keywords: modeling, meta-modeling, refactoring, error correction, vali-
dation, UML

Acknowledgements

We would like to thank Thomas Wiman at Objektfabriken for giving us
much appreciated help, many hours of discussing our thoughts back and forth
and for the rewarding collaboration we have had during the simultaneous
development of MetaModelAgent for Eclipse and our extension of the very
same program.

We also would like to thank our supervisor Asa Detterfelt at Attentec AB
and our examiner Peter Bunus for the assistance in getting started with the
project and for helping us during the writing of this thesis report.

Contents

List of Figures

1

Introduction

1.1
1.2
1.3
1.4

1.5
1.6

Background
Purpose,
Objective
Method
141 Research
1.4.2 Prototyping
Limitations
Thesis Outline

Theoretical Background

Modeling and Meta-Modeling

2.1
2.2
2.3

Modeling Languages
Modeling Layers.
Meta-Models Defining Modeling Guidelines

The Modeling Environment

3.1
3.2
3.3
3.4
3.5

Eclipse oo
Eclipse Platform
Eclipse Modeling Framework and UML2 .
IBM Rational Software Architect
MetaModelAgent

Modeling and Meta-Modeling by Example

4.1

Model

vii

10
11
12

viil

CONTENTS

4.2.2 Relations

5 Definition of Model and Meta-Model Problems

5.1 Model Problems
5.2 Meta-Model Problems

IT Correction of Models

6 Correction Suggestions
6.1 Different Approaches to Correction Suggestions

6.1.1 The Simple and Generic Approach
6.1.2 The Rule-Based Approach
6.1.3 A Combination of Approaches
6.2 Our Approach to Correction Suggestions
6.2.1 Finding Correction Suggestions
6.2.2 Calculating Suggestion Probability

6.2.3 Suggestions for Different Problem Kinds

6.2.4 Meta-Model Errors

6.2.5 Applying Suggestions Using Refactoring

7 Meta-Model Guided Model Refactoring

7.1 Model Refactoring
7.2 Using the Meta-Model as Guidance

8 Implementation

9 Related Modeling Environments

9.1 The Generic Modeling Environment
9.1.1 Meta-Modeling in GME
9.1.2 The Modeling Environment
9.1.3 GME Compared to MetaModelAgent

9.2 A Tool for Multi-Formalism Meta-Modelling
9.2.1 Meta-Modeling in AToM3
9.2.2 The Modeling Environment
9.2.3 AToM3 Compared to MetaModelAgent . . .
9.2.4 AToM3 Compared to GME

10 Related Work

CONTENTS ix
IIT Result 65
11 Benefits of Meta-Modeling 67
11.1 The Benefits of MetaModelAgent 67
11.2 Correction of Model Errors 68
11.3 Guided Model Refactoring 69
12 Conclusion and Future Work 71
12.1 Conclusiono 71
12.2 Future Work oo 71
Glossary 75
Bibliography 77

List of Figures

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Four-layer architecture.,

Eclipse Platform components. Figure from IBM [16]
Eclipse Platform architecture. Figure from IBM [16]

Model elements representing a Java class and an actor.

Meta-class representing an actor element.
Two meta-classes describing two different types of actors. . . .
Meta-class with operation.
Meta-class using enumeration.
Relation between two meta-classes.
Inheritance in a meta-model.
Meta-classes for a class and operations.
Meta-classes for a diagram and classes.

4.10 Meta-model allowing inheritance between classes.
4.11 Inheritance in amodel.
4.12 Instantiation of a meta-model.

8.1
8.2

Implementation of MetaModelAgent on the Eclipse Platform. .
Implementation of the extension to MetaModelAgent.

Chapter 1

Introduction

1.1 Background

The use of modeling as a process in the development of complex systems is
becoming more widespread. The need to abstract a system and its behavior
has been evident for a long time, but no standard has existed. There is
also a need for computer-aided systems that can check the model against the
system guidelines. To model a complex system is not an easy task, as such
system can contain elements, aspects, constraints and properties that are not
possible to model by using only one single modeling language.|[35|

One solution to this is to create a modeling language that can describe ev-
ery part of the system. In many cases this is neither possible nor meaningful.
There exist formalisms that span multiple domains such as Unified Model-
ing Language (UML) and Entity Relationship-diagrams, although none that
can describe all types of domains. One of the drawbacks when using generic
modeling languages is that no domain-specific knowledge may be used to
enhance functionality or to handle domain-specific cases. On the other hand
one could use different modeling languages for different aspects of the sys-
tem, and choose the most practical language for each part. The problem
with this approach is that the modeler has to be skilled in all modeling lan-
guages and it will be hard to integrate the models and use them together.
What is needed is something in between, a way of describing the domain spe-
cific knowledge of the system, while still keeping the advantages of a general
modeling language capable of modeling many different aspects of a system.

A system will typically have guidelines (often domain specific) that should
be followed by every user of the system. To create correct models the domain
has to constrain the models according to these guidelines. What is needed
is a domain that can describe the systems model and put constraints on it.

2 1.2. PURPOSE

Guidelines for modeling are often used to ensure that certain name standards
are followed or that the models use the same structure. This could be com-
pared to the use of templates in word processing programs to get the same
look and structure on all documents produced, or perhaps to the use of a
company style guide that ensure that all produced documents and products
uses the company logo.

In this thesis we present an extension for MetaModelAgent, a tool that
is used for creating domain-specific modeling environments for software sys-
tems. MetaModelAgent has a meta-model layer that serves as system guide-
lines for modeling. These guidelines describe what elements are valid in the
domain and what constraints need to be fulfilled. The tool validates models
against a meta-model to check for structural conformance and detect behav-
ioral differences. UML is used both in the modeling environment and to
describe the meta-model. Since both model and meta-model is described by
UML, users modeling with MetaModelAgent will only need to learn and use
one modeling formalism.

Up until now MetaModelAgent would only find errors in the model by
validating it and present these problems to the user. This thesis presents an
extension to MetaModelAgent that combines meta-model guided refactoring
and techniques for finding the most appropriate correction to a problem in the
model. This transforms MetaModelAgent from a domain specific modeling
environment to a fully type-based modeling environment capable of perform-
ing model refactoring and presenting correction suggestions for user-created
errors.

1.2 Purpose

The purpose of this project is to give users of the modeling environment
IBM Rational Software Architect (RSA) with the meta-modeling plug-in
MetaModelAgent more help in producing correct UML-models or validating
already existing UML-models. The thesis examines if it is possible to develop
a system for finding possible error corrections for UML-models based on a
validation against their meta-models.

The thesis answers the question of whether it is possible to develop a
good algorithm for model correction by finding the most relevant or in some
way "best" solution to an error in the model. It also answers the question of
what the best approach for this algorithm could be.

CHAPTER 1. INTRODUCTION 3

1.3 Objective

The goal of the project is to develop a working prototype as an extension
to MetaModelAgent that provides the user with error corrections for models
that are found to have errors when validated against their meta-model. The
objective with this prototype is to explore the possibility of producing cor-
rection suggestions based on the meta-model, rather than trying to provide
a fully functional system.

The aim is also to include in the prototype means of presentation of
correction suggestions. Corrections suggestions must be easy to use in Meta-
ModelAgent and one important part in this is to present them in a useful
way for the user. The project should result in one or many presentation
techniques that integrate nicely with RSA and MetaModelAgent while at
the same time making it easy for the user to get a clear image of the changes
that are being suggested.

The thesis also includes a theoretical part (see chapter 6.1) concerning
the correction algorithm. The theoretical part is based on previous work
published in the area of meta-modeling, model validation and UML in gen-
eral. The theoretical part motivates our choice of approach for the algorithm,
together with other possible approaches and their pros and cons.

1.4 Method

This project was performed at Attentec AB, a company specialized in consul-
tancy in Linkoping. The project is done in cooperation with Objektfabriken
in Stockholm, using software produced by Objektfabriken and maintaining a
close contact with them throughout the project.

The nature of the problem this thesis targets is such that there exist a
need for both research and development. Because of this we had a clear
division of two major tasks from the beginning; research and prototyping.
The tasks were divided into several other parts that we will describe in this
section.

1.4.1 Research

The research part of this thesis was divided into literature study and ex-
amination of already existing tools. Interestingly enough there seems to be
little previous research about the idea of finding correction suggestions for
modeling errors based on meta-models. The topics that have been researched
included, but were not limited to, modeling, meta-modeling and model cor-

4 1.5. LIMITATIONS

rection based on other theories, for example by cross-checking different mod-

els describing the same system against each other to find inconsistencies (see
Chapter 10 Related Work).

1.4.2 Prototyping

The results of this project are presented by the implementation of a prototype
that demonstrates that the results are applicable and usable.

This project implements a model parser to gain more knowledge about
what kinds of problems might occur in a model, even though a parser from
Objektfabriken (MetaModelAgent) already exists. This fine-granulation of
the problem space is used to generate more exact correction suggestions.

Using these definitions of possible problems in a model the project exam-
ines different approaches for a system that generate correction suggestions
and calculate the probability that a given suggestion would be useful for
the user of the system. The set of generated suggestions is developed by
examining the problem definitions and by evaluating what kind of sugges-
tions each problem could be solved by. For each problem this results in a
set of possible suggestions. The project developed a probability generator
for correction suggestions that calculates the probability for each suggestion
that this correction suggestion is the suggestion preferred by the user of the
system.

In the final stage of the project a prototype has been developed as an ex-
tension to MetaModelAgent that incorporates all the functionality mentioned
above and presents the results to the user.

1.5 Limitations

Since this project has been limited in time and the area of modeling, meta-
modeling and error correction is such a large area, some limitations on the
project had to be done.

One limitation is that only a prototype of the proposed solution for error
correction in models will be implemented, thus leaving parts of implementa-
tion and research to later projects.

Another limitation is that the project will not perform any thorough
evaluation of how the implemented prototype will be used, which implies
that statistics for performance improvement, measures of usability, etc. will
not be presented.

CHAPTER 1. INTRODUCTION 3

1.6 Thesis Outline

This thesis is divided into three distinct parts, each consisting of a few chap-
ters. The first part gives the reader the needed theoretical background, fo-
cusing mostly on modeling and meta-modeling. The second part describes
the project closer, including our proposed solution to finding correction sug-
gestions and technical implementation details. The third part contains the
results of the project and the conclusions drawn from them.

This thesis is intended for anyone interested in the software modeling.
The reader may be a developer already using modeling in hers or his daily
work, but it might as well be a person working in or studying technical or
computer related areas.

1.6. THESIS OUTLINE

Part 1

Theoretical Background

Chapter 2

Modeling and Meta-Modeling

Computer software is sometimes said to be one of the most complex creations
of humans so far. Regardless of whether this is true or not, it is still clear that
software can be very complex. A large software system can reach millions of
lines of code, which might be compared to an aircraft with millions of parts
or even a space shuttle with tens of millions of parts [3]. The complexity of
software systems often make them hard to understand and it is a problem to
get a good view of the whole system, how the system works and what parts
of the system interact with each other.

Models are one approach to making large systems (not necessarily soft-
ware systems) more understandable. A model tries to capture a specific
aspect of a system by presenting only the information of the system that is
necessary to describe the current aspect of the system. A model might also
be interpreted as a collection and ordering of the information we have about
a system, a notion which is easily compared to the human mind and its’ way
to build a mental representation of an item.

Models can also be used as a way of performing experiments on a system
without changing the actual system. By using a model of the system, changes
and alterations of the system can be tested without having to change the real
system.

In software engineering, models are often used to describe a system. A
model of a system can be developed before the actual system is constructed
to help plan the development and to find possible errors in architecture be-
fore doing the implementation [8]. The model can also be developed and
used after the system has been constructed, to help keeping the system un-
derstandable.

When talking about models and modeling there may sometimes be some
confusion because of the different abstraction levels of different models. A
number of models describing the same system may be entirely different from

10 2.1. MODELING LANGUAGES

each other and describe the system from different views and abstraction
levels. For example a software system could be described by two models. One
model may be very detailed and show the interoperations between different
classes and their methods, while the other model describe large parts of the
system and their communication or even use-cases for the system. This is
the strength of models, to be able to view a specific aspect of a system, but
can also lead to confusion - especially if used in an unclear way.[23]

A model is the first level of abstraction above the actual implementation
of a system. It describes the system and keeps information about the sys-
tem. One level of abstraction higher we find the meta-model, i.e. a model
describing the model. The meta-model can be a way to keep the model un-
derstandable, to capture specific aspects of the model and to ensure that
different models follow the same guidelines or use the same structure.

In much the same way as models can be developed before the system
they describe is developed, meta-models can be developed before the model
they are describing to help in the creation of the model. They can also be
developed afterwards to make the model more understandable.

One common way of using meta-models is to use them as guidelines for
creating the model. The same meta-model can be used for many different
models, thus assuring that they follow the same guidelines. These guidelines
might include rules for structure of the model, naming conventions for ele-
ments in the model or limitations in the way different elements are related to
each other. We will return to this subject in Chapter 4 Modeling and Meta-
Modeling by Example.

2.1 Modeling Languages

There exist many standards and languages for modeling. Most modeling
languages use some form of graphical notion for modeling to enhance the
use of the models. A graphical notion often gives the user a better view
of how the system really looks and works in contrast to a text-based no-
tion. There are many standards and languages that are domain-specific. A
domain-specific modeling language is ER-models that are used for modeling
Entity-Relationship-systems, often used for modeling databases [9]. Other
domain-specific languages (or formalisms) are for example Petri Nets, Bond
Graphs, Differential-Algebraic Equations (DAEs) and many more [37].
There are also some general-purpose modeling languages that are not
domain-specific. UML from the Object Management Group (OMG) is the
most widely-known of these languages. UML has become the industry de
facto-standard for modeling software systems, but can also be used for busi-

CHAPTER 2. MODELING AND META-MODELING 11

ness process modeling, system engineering modeling or representing organi-
zational structures.

2.2 Modeling Layers

Since a model describes the actual implementation of a system, the system
can be seen as an instance of the model. In the same way, the model of
a system is said to be the instance of the meta-model. This definition is
recursive, in the meaning that any level of abstraction can be instanced into
the level which it describes, as well as be abstracted further by adding another
meta-level.

OMG defines the four-layer meta-model architecture [31], containing four
levels of abstraction as can be seen in Figure 2.1. These levels are called
MO to M3. The MO0-level in the bottom is the "real world", i.e. the objects
created during execution of the software. The objects are an instance of the
M1-level, the classes and the UML-model describing the system. The M2-
level contains the meta-model, i.e. the model of which the UML-model in
M1 is an instance. This meta-model could be the UML meta-model which
describes the UML specification, or it could contain more project specific
guidelines for the model. The highest level of abstraction as described by
OMG is M3, which is the meta-meta-model level. This level is meta-circular,
meaning it is an instance of itself and defines the language for specifying
meta-models.

Laver Description

meta-metamodel The infrastructure for a metamodeling
architecture. Defines the language for
specifving metamodels.

metamodel Aninstance of a meta-metamodel.
Defines the language for specifving a
model.

model An instance of a metamodel. Defines
alanguage to describe aninformation
domain.

user objects Aninstance of a model. Defines a

(user data) specific information domain.

Figure 2.1: Four-layer architecture.

Even though OMG defines four layers of abstraction, it is common to
have a smaller number of abstraction levels (e.g. model and implementation

12 2.3. META-MODELS DEFINING MODELING GUIDELINES

only) for a given system or project. It also possible to define any number of
meta-levels, for example adding one to the four-layers architecture by having
both the UML meta-model describing the possibilities of UML and a meta-
model describing constraints or guidelines that are specific to the problem
domain, project or organization.

2.3 Meta-Models Defining Modeling Guidelines

Meta-models often define the language and the possibilities for the model,
i.e. how a correct model should look and work, what elements are allowed
and how elements can relate to each other. These are often given by a third-
party organization, like the UML meta-model defining the language UML
and its’ semantics. However, there is often a need for companies to include
their own modeling guidelines in a meta-model. These meta-models could
contain information about model structure, naming conventions and many
other modeling guidelines. Many processes used in the industry, e.g. qual-
ity processes like Capability Maturity Model (CMM) and Software Process
Improvement and Capability dEterminiation (SPICE) or project processes
like Rational Unified Process (RUP) also supply guidelines for the processes
that also reflects in the models of the system. Such guidelines can also be
described in user defined meta-models.

Different tools for modeling use different approaches to user defined meta-
models. Some let their users create their own meta-models in the same mod-
eling language as the model itself is expressed in; while others provide a
separate meta-modeling language to let their users express their guidelines
for the models. There is also a difference in how these tools use the user
created meta-models, while some use the meta-models to only let their users
create models that are allowed by the meta-model, others use the meta-model
for validation of the model afterwards. In Chapter 9 Related Modeling Envi-
ronments we will describe some of these tools more thoroughly and explain
how meta-models are used for expressing modeling guidelines.

Chapter 3

The Modeling Environment

This chapter will describe the modeling environment in which the project
have been performed and implemented. This serves as a background for our
solution as well as a view of these tools and environments.

3.1 Eclipse

Eclipse is the name of an open-source community that aims at providing
a developing platform and application framework for building software, al-
though the name Eclipse is often used for other products made by the Eclipse
community. Even though the Eclipse project is an open-source community,
much of the contributions to the different projects come from personnel at
IBM.[17]

The main project of the Eclipse community is the Eclipse Platform which
is a set of frameworks for integrating different products with other Eclipse
products.[16]

The Eclipse SDK is a Java development tool built on top of the Eclipse
Platform, including among other features a java compiler plug-in and a java
debug plug-in.[11]

3.2 Eclipse Platform

The Eclipse platform is a collaboration of numerous components that to-
gether form the platform. The entire platform can be divided into two major
levels, as seen in Figure 3.1, where the Eclipse Rich Client Platform (Eclipse
RCP) is a subset of the Eclipse Platform. The Eclipse Platform is the top
layer and contains extended features that are applicable for developing IDE

13

14 3.2. ECLIPSE PLATFORM

Eclipse Flatform

<>
DCebug @

Eclipse RCP ‘?~— <D

0 .®;

Figure 3.1: Eclipse Platform components. Figure from IBM [16]

environments. The Eclipse RCP contains features for building arbitrary ap-
plications that does not necessarily have to be software engineering applica-
tions.

To make all the components work together during runtime they are de-
veloped as plug-ins to the core of the platform called Eclipse Runtime Core,
which detects them during start up. A plug-in must declare what extensions
it will make to the platform so that the core can decide what it needs to
load before it can start the plug-in. Most of the functionality of the Eclipse
Platform resides in plug-ins that need to be loaded before it can be executed.

It would take a lot of time if all of them were to be loaded at start
up. To solve this, Eclipse uses a proxy between the real plug-in and the
program, which enables Eclipse to load the plug-in when it is needed, but
still present adequate information about the plug-in by only loading the plug-
ins definition file at start up. Once loaded, the plug-in will not be disposed
until the program is closed. Since Eclipse is made up of plug-ins that declare
extension points, there are many possible places to extend the platform as
seen in Figure 3.2.

A plug-in is written in Java and compiled into a .jar file along with an
XMIL-file named Plugin.xml that Eclipse Runtime Core loads at start up.

CHAPTER 3. THE MODELING ENVIRONMENT 15

/Eclipse Platform ™,

workbench Help New Toal
SWT
j New Tool
workspace
—

Platform Runtime)

A

Figure 3.2: Eclipse Platform architecture. Figure from IBM [16]

The Plugin.xml file declares where the plug-in will extend Eclipse and op-
tionally how other plug-ins can extend the plug-in.[16]

3.3 Eclipse Modeling Framework and UML2

Eclipse Modeling Framework (EMF) is a modeling framework for building
tools and other applications based on a structured data model [6]. EMF
provides the foundation for interoperability with other EMF-based tools and
applications. EMF uses XML Metadata Interchange (XMI) as its’ way to
save and handle models. This makes it easy to move models between EMF
and many other modeling tools, for example Rational Rose that can both
import and export their models to XMI [14].

UML2 is an EMF-based implementation of the UML 2.x standard [15].
This gives developers an API for working with UML-models and EMF [25].

3.4 IBM Rational Software Architect

IBM Rational Software Architect (RSA) is a design and development tool
built on top of the Eclipse SDK. RSA is intended for design and development

16 3.5. METAMODELAGENT

of entire software projects. The main extension of the Eclipse SDK is the
ability to design models using RSAs UML-modeling feature. This is not the
only extension but the most relevant for this thesis. RSA was released in
2004 and was the first release that was entirely built on top of the Eclipse
SDK and Framework.

RSA is a total remake of the program Rational Rose, which was a stand-
alone program used for modeling and design. This program was created by
the company Rational. IBM acquired Rational in 2003 and changed the
name of the program to IBM Rational Rose.|7]

3.5 MetaModelAgent

MetaModelAgent works as a plug-in for RSA. MetaModelAgent provide de-
velopers with an automatic tool for verifying their models against predefined
guidelines in the form of meta-models. Models and meta-models are created
in UML, using the UML model development features of RSA.

MetaModelAgent mainly uses the UML2 API, which makes it generic
enough to be easily extended to any modeling tool built on the Eclipse Plat-
form that uses their UML2 APT [15]. See Chapter 8 Implementation for more
details about MetaModelAgent and the extension that this project have im-
plemented.

The first task is to create guidelines in the form of a meta-model that
can be instantiated. MetaModelAgent then let users create new models by
instantiating them from the meta-models. A model that is instantiated from
a meta-model should conform to it. MetaModelAgent performs a validation
of the model against the instantiated meta-model to check for conformance.
If the validation find problems in the model, it does not totally conform to the
meta-model. MetaModelAgent will notify the user of the lack of conformance,
and describe the problems found during validation.

MetaModelAgent was at first a plug-in to Rational Rose, but will during
this project be rewritten as a plug-in to RSA by Objektfabriken. This project
is only examining MetaModelAgent for RSA and the results is implemented
as an extension for MetaModelAgent for RSA.|29, 30|

Chapter 4

Modeling and Meta-Modeling by
Example

This chapter shows how to use modeling and meta-modeling by using exam-
ples. It clarifies the different parts that make up a meta-model, how they
relate to models and how meta-models can control models.

Meta-modeling is the process in which a new modeling domain is devel-
oped. A meta-model describes the valid model elements in a domain and
what constraints to put on each element and relations among them.

To put constraints on a model domain is the sole purpose of meta-
modeling. The purpose of a meta-model is to take a general modeling lan-
guage and narrow it down so that it will only describe the domain it will be
used for and nothing else. By doing this it can be ensured that the modeled
system will be correct according to a set of guidelines.

This project has been implemented as an extension to MetaModelAgent,
which is a plug-in to RSA. Read more about the implementation of the system
in Chapter 8 Implementation. MetaModelAgent is built on top of RSA and
therefore uses the UML standard.[32]

4.1 Model

This section explains what a model element is, the structure of a model
and the model elements and how a model element can be controlled and
visualized.

Model elements can be of any UML type [32]. Apart from the type of the
element there are a number of properties that can be set on each element.
What properties can be set for a model element is different depending on the
type of the element. Most elements in UML have properties for name and

17

18 4.1. MODEL

stereotype that can be set. The name is used to identify a model element
among elements of the same type. The stereotype is used to further specify a
UML type. When the stereotype is set, the original type of the element can
be said to be a basic template for the element and the stereotype a further
specification. E.g. the stereotype Java Class can be set on a model element
of the type UML Class to make the further specification that this is a Class
but more specifically a Java Class. In what way a Java Class is different from
the base Class is up to the user to define.

Some types of model elements can have other model elements as child
elements, e.g. Packages can have any other model element as a child element
or a Class can have Operations or Properties as child elements. A child
element is contained in the model element that is the parent to it.

Some types of model elements cannot have child elements of their own but
can contain references to other elements, e.g. the Diagram model element.
Diagrams are only used to visually present other model elements and the
reference is a way to refer to the model elements that are being showed in
the Diagram.

The type of a model element defines how it should be visualized. There is
no exact standard for how UML elements should be visualized, although the
main look is decided. The details are however left to the modeling tool to
decide. This has created a variety of styles between different UML modeling
tool vendors. Despite the differences, they are similar enough that there
should be no problem for an experienced modeler to know what element
it is. Typically a visualization of a model element should present the most
important features of an instantiated type. Besides from a visual presentation
of the type in some way, the important features of an element that should
be presented are the name and stereotype properties.

«Java Classs

{9 Box
o height ; int
o width ¢ int
@ getHeight (] wAdministratars
@ getwidth () System admin

Figure 4.1: Model elements representing a Java class and an actor.

In Figure 4.1 two examples of model visualizations as they are done in
RSA are presented. The left one is a Class model element and the right one
is an Actor model element. The Class is visualized by a box that displays the

CHAPTER 4. MODELING AND META-MODELING BY EXAMPLE 19

important properties that the class has. At the top is the stereotype «Java
Class» and beneath the stereotype is the name of the model element. To the
left of the name is an icon that shows that this is a Class element. The icon
is needed to display the type of the model element because there are other
elements that are visualized in the same way, e.g. Interfaces.

The Class element also shows the four child elements of the model ele-
ment, the two Properties height and width and the two Operations getH-
eight() and getWidth().

The Actor element has its own visualization, but as can be seen the
stereotype and name is shown.

4.2 Meta-Model

Meta-models are models too [37]. The meta-model is a layer that lies above
the model layer; see Chapter 2 Modeling and Meta-Modeling. In the same
way as the model tells the developer how to write his code, the meta-model
tells the modeler how to develop his model.

The concept of creating the meta-model in the same environment and
the same modeling language as the model itself is a powerful concept. The
modeler does not need to know any other formal language besides UML (in
the RSA and MetaModelAgent case - however, it could be any other general
modeling languages as well) to create and interpret meta-models. Since it is
done in a visual modeling language the process of working with meta-models
will be easier.

In this section we will present the different elements that make up a
meta-model in RSA and MetaModelAgent, how to structure them and how
to express modeling guidelines with them. It should be noticed that the
described method of meta-modeling is specific for MetaModelAgent.

4.2.1 Elements

Meta-models in MetaModelAgent are described using a subset to UML Class
Diagrams. Classes, Attributes, Operations, Enumerations and Packages
make up the entire structure of a meta-model [28].

An element in the meta-model is referred to as a meta-model element
to differentiate it from model elements, i.e. elements in the model. Classes
in the meta-model are referred to as meta-classes. A meta-class represents
an UML type in the modeling domain. The stereotype of the meta-class
describes what type of model element that the meta-class represents. As can
be seen in Figure 4.2 the stereotype is set to Actor to make the meta-class

20 4.2. META-MODEL

represent an UML Actor. The model element Administrator (with UML
type Actor) will be an instance of the Actor meta-class, and vice versa the
meta-class Actor will be the classifier of the model element.

ahctors
() Actor

Administrator

Figure 4.2: Meta-class representing an actor element.

Attributes can be added to a meta-class to put constraints on model
elements that are instances of the meta-class. The attribute has to reflect
something in the model element, that is, the property of the model element
it is constraining must exist in the model element. E.g. the name can be
constrained to a constant or a regular expression. An attribute in a meta-
class has a stereotype, a name, a type and a value. The text notion for this
in MetaModelAgent is "«stereotype» name : type — value".

The stereotype of the attribute can be set to key, rule, rec (short for
recommendation) and info. If it is set to key it implies that for a model
element to be classified as an instance of this meta-class, the property of the
model element with the same name as the name of the attribute that has
key as stereotype has to be correct (according to the value of the attribute)
for the model element. If the stereotype rule or rec is used on a property
it signals the importance of the constraint, where constraints marked with
rule are mandatory for the model to be valid and rec is recommended for
the model. When the stereotype is set to info this will be seen as a piece
of information, for example a rule that will not be enforced - only informed
about.

The name of the property has to be a valid property of the UML element
that it is representing. Setting a constraint on a property that is not present
in the UML type will result in an incorrect meta-model.

The values that is possible to set for an attribute in a meta-class depends
on the type of the attribute. If the type is String, the value could be any
static string or it could be a regular expression. If the type is Boolean, the
values could be true or false. It is also possible to use enumerations for
expressing a set of allowed attribute values, which will be described in detail
later on in this section.

CHAPTER 4. MODELING AND META-MODELING BY EXAMPLE 21

In the process of finding a classifying meta-class for a model element,
only the stereotype of the meta-class and property constraints marked with
stereotype key is considered. Neither rule nor rec property constraints are
evaluated in this process since they do not contain any information that
would change whether the meta-class is a classifier for the model element or
not.

For example we could have two meta-classes with the same stereotype
(thus classifying the same type of model elements), but with different key
property constraints on the property name. In Figure 4.3 two meta-classes
with the stereotype Actor uses the key property constraint on the property
name to ensure that the meta-model is unambiguous.

@ACTor ahCtors
{3 User Actor (& Administrator Actor
o «key: name ; String = User o «key: name : String = Admin

ahCtars
Admin

Figure 4.3: Two meta-classes describing two different types of actors.

When a classifying meta-class has been found for a model element, the
rule and rec constraints are evaluated for the model element. If the model
element does not follow the guidelines expressed as property constraints in
the meta-model, the model is a non-valid model.

Operations in the meta-model are used to specify behavioral features of a
meta-class. See Figure 4.4 for an example of a meta-class with an operation.

«Packages
{3 Project Package

@ Instantiate ()

Figure 4.4: Meta-class with operation.

22 4.2. META-MODEL

The operation Instantiate() tells the parser that models can be instan-
tiated from this meta-class, i.e. that the meta-class with the operation is a
classifier for the top element in the model. This operation is only allowed
for meta-classes with the stereotype Package, since only packages can be
top elements. To permit a model element to have any type of children the
operation permitAll() is included in the classifying meta-class of the model
element. This will stop the parser at this model element, thus allowing any
kind of underlying constructions. The operation External() expresses that a
model element is not allowed in the model but is allowed to be referenced by
the model element. This can be used to show things in a diagram that is not
a model element, e.g. showing resources in a diagram from the RSA project
that are outside the model.

Enumerations are used to create a set of valid values for the attribute. In
a meta-class a constraint on the name could allow an enumeration of values,
i.e. give a set of names that would be allowed. Enumerations could also be
used to express that all values except for those listed in the enumeration is
allowed. See Figure 4.5 for an example where enumerations are used to create
a meta-class which allows the name of an Actor to be either "Administrator",
"Admin" or "SysAdmin". By changing the value "YES" to "NO" the name
could have any value except for those three names.

whctor wenumeration:
{2 Administrator = AdminNames
o «keys name : AdminMames = YES o Adrinistrator
o Admin
o Sysadmin

Figure 4.5: Meta-class using enumeration.

Packages are used to structure the meta-model. By using packages a
meta-model can be divided into sub models. Each sub model might be a
meta-model for a specific part of a system.

4.2.2 Relations

The possible relations in a meta-model are Association, Dependency and
Inheritance relations. Relations describes the structure and the constraints
in the meta-model, defining which model elements can be placed at each level

CHAPTER 4. MODELING AND META-MODELING BY EXAMPLE 23

of the model and also the multiplicity (i.e. the allowed number of elements)
of model elements.

In the same way as any other model element, a relation can have a stereo-
type. In a meta-model this is on Associations and Dependencies used to
express the severity of the relation, i.e. if it is a rule or a recommendation.
Setting the stereotype on an Inheritance relation does not have any semantic
meaning for the meta-model.

By setting the stereotype of the relation to «rule» we let the parser know
that it should generate an error if the model does not contain the model
elements that the meta-model indicates it should. If the stereotype is set to
«recythe parser only generates a warning, which for example could be used
to express that each package in the model should have a diagram in it, but
that it is not necessary for the model to be valid. If the stereotype is not set
for a relation, this is interpreted as a rule.

A relation between two elements also has an attribute named multiplicity.
Multiplicity cannot be set for inheritance relations (see further down for
explanation of inheritance). The multiplicity attribute allows the user to set
a minimum and a maximum number for the relation. In a meta-model this
is used to set an upper and a lower limit on how many model elements that
may be related through the relation.

See Figure 4.6 for an example of a relation using the multiplicity to express
that there should be at least one Java class (1..* is read as 1 to any number,
i.e. more than one) in the class package and using the stereotype to express
that it is a rule.

«Packages wClagss
(3 Class Package arules (9 lava Class

Figure 4.6: Relation between two meta-classes.

Inheritance in meta-modeling is used in the same way as inheritance is
used in object-oriented languages. A meta-class can inherit from another
meta-class, inheriting all the parents’ attributes, the relations of the parent
and any operations such as Instantiate() or PermitAll(). When inheriting
from a meta-class the child has to have something that uniquely identifies it
(e.g. a key-attribute), otherwise the meta-model will be ambiguous. This is
especially true if more than one meta-class inherits from the same meta-class.

24 4.2. META-MODEL

If the meta-model is ambiguous, MetaModelAgent will not be able to find
the correct instantiation for some model elements.

As seen in Figure 4.7 the two packages Actor Package and Use-Case Pack-
age inherit from an abstract meta-class Package (i.e. a meta-class that a
model element cannot be instantiated from - much like abstract classes in
object-oriented languages). The Package meta-class contains one attribute
that both the inheriting meta-classes will inherit. To make the two packages
unique, each of them has a key-attribute on the stereotype property (named
keywords when used in the meta-class).

«Packages
(3 Package
o rules name ; String = .+

«Packages «Packages
{3 Actor Package {3 Use-Case Package

o ekeyes keywords @ String = ActorPackage o xkeys keywords @ String = UseCasePackage

Figure 4.7: Inheritance in a meta-model.

Relations of the type Association can be of different types. The types
that are used in MetaModelAgent are composition, aggregation and directed
association.

A composition association has two ends, one owner and one target. In
each end there will be a meta-class. The owner side will have a filled diamond
to mark this side. The meaning of the composition association in a meta-
model is that the meta-class that owns the composition will be able to have
the target meta-class as child element. This means that a model element that
is an instance of the owner meta-class will be able to have model elements
that are instances of the target meta-class as child elements.

Multiplicity on a composition will put a constraint on how many model
elements of the owned meta-class type the parent model element can have. A
multiplicity constraint can be set to an exact integer, any interval of integers
(e.g. 2..15) or any number of elements (expressed by *). It is also possible

CHAPTER 4. MODELING AND META-MODELING BY EXAMPLE 25

to only set a lower limit by writing 3..*, thus expressing that there should
be at least 3 elements. In Figure 4.8 an example where a class can have any
number of operations is depicted.

wiClasss «Operations
(=) Class {3 Operation

Figure 4.8: Meta-classes for a class and operations.

Aggregation associations are used in the same way as compositions, the
difference is that an aggregation association means that the owning meta-
class can have a reference to the target meta-class. This means that a model
element that is an instance of the owning meta-class type will be able to
have a reference to one or more model element children of the target meta-
class type. As mentioned earlier, the only time references are being used
in models is in diagrams, when the diagram has a reference to each model
element that is visible in the diagram. An example of the meta-classes for a
diagram that should view at least one class can be seen in Figure 4.9. The

type FreeformDiagram is a diagram that can show any type of elements in
RSA.

«Freeformbiagrarm:: lC|asss
(=) Diagram {3 Class

Figure 4.9: Meta-classes for a diagram and classes.

Directed associations represents an "is a'"-relation. The best way to define
the meaning of the directed association is by an example. As seen in Fig-
ure 4.10 the example shows two meta-classes. The first meta-class is named
Class and describes model elements of type Class and the second meta-class
is named Class Inheritance and describes model elements of type General-
ization. The generalization meta-class is a meta-class for model elements of
the type generalization, which is an inheritance relation between two model

26 4.2. META-MODEL

elements (note that the relations themselves are model elements as well -
thus allowing them to be described by meta-classes in the meta-model).
This structure makes up a rule that a model element of type Class can
inherit from at most one other model element of the type Class (i.e. it can
inherit, but it does not have to). There is a composition association owned
by the meta-class Class that allows a model element of type Class to have at
most one child of the type Generalization. The Generalization meta-class has
a directed relation to the meta-class Class. This tells us that a Generalization
element has a property called target that is of the type Class. The meaning of
the target property is that a model element of type Generalization can point
at a model element of type Class. In the model this structure will mean that
a model element of type Class can own a Generalization association that
points to another model element of type Class, as shown in Figure 4.11.

1 0.1
wiClasss «iaeneralization:
(3 Class 1 " (3 Class Inheritance

Figure 4.10: Meta-model allowing inheritance between classes.

Dependency relations are only used in the meta-model to specify that a
meta-model is dependent on a meta-meta-model in the same way as declar-
ing that a model is dependent on a meta-model. This is done by creating a
dependency relation between the model and the meta-model (or the meta-
model and the meta-meta-model) and giving the relation the stereotype in-
stanceOf. In Figure 4.12 we show how to connect the use case model "Order
and Storage System" to the meta-model "Use-Case Model Guidelines".

CHAPTER 4. MODELING AND META-MODELING BY EXAMPLE 27

wiClasss
{3 Shape

wiClasss

{2 Box

Figure 4.11: Inheritance in a model.

«MetaMadel»
% Use-Case Model Guidelines

winstanceOf:

“lise case model:
£ Order & Storage System

Figure 4.12: Instantiation of a meta-model.

28

4.2. META-MODEL

Chapter 5

Definition of Model and
Meta-Model Problems

This chapter presents the definitions that we use to categorize the problems
that may be found in a model or a meta-model. The categorization has been
made after examining what errors may occur in a model.

5.1 Model Problems

Most of the problems that can be found during validation are problems oc-
curring in the model, due to an error in the model when it is validated against
its’ meta-model.

Child Overflow

A child overflow problem occurs when a model element has too many children
of a given type according to the meta-model. If the meta-model specifies
that a model element can only have one child of a certain type and the
model includes an element with more than one child of the given type a child
overflow problem occurs.

Child Underflow

A child underflow problem occurs when a model element has too few children
of a given type according to the meta-model. If the meta-model specifies that
an element should have one or more children of a given type and the model
element does not contain any elements of the specified type, a child underflow
problem occurs.

29

30 5.1. MODEL PROBLEMS

Reference Overflow

A reference overflow problem occurs when a model element has too many
references to other elements that are instantiations of the same meta-class.
If the meta-model specifies that a model element can only have one reference
to a certain type and the model includes an element with more than one
reference to the given type a reference overflow problem occurs.

References are only used in diagrams where a reference to a model element
indicates that this model element is shown in the diagram. A reference
underflow will only occur when a diagram does not have enough references
to a certain type of model elements.

Reference Underflow

A reference underflow problem occurs when a model element has too few
references to other elements of a given type according to the meta-model. If
the meta-model specifies that an element should have one or more references
to an element of a given type and the model does not contain any references
to elements of the specified type, a reference underflow problem occurs.

References are only used in diagrams where a reference to a model element
indicates that this model element is shown in the diagram. A reference
underflow will only occur when a diagram does not have enough references
to a certain type of model elements.

Invalid Child

An invalid child problem occurs when a model element has a child that is a
valid UML item and is allowed by the meta-model, but not as a child to the
given model element. This means that the child element is a correct element
according to the meta-model, but that it is placed in the wrong place.

Invalid Reference

The illegal reference problem is the same as the illegal child problem, but
instead of a child to the element it is a reference to an invalid element that
causes the problem. It is still an element that is connected to a parent that is
not allowed to have it. But a reference does not have the child directly under
it and is therefore not the owner of the element. This changes the types of
correction suggestions that are applicable to the problem. Since we are not
the owner of the element we should not give as a suggestion that we should
alter the element in some way, this will be taken care of if the element is also
an invalid child.

CHAPTER 5. DEFINITION OF MODEL AND META-MODEL
PROBLEMS 31

Unknown Item

An unknown item problem occurs when a model element is found during
validation that is not allowed at all by the meta-model. This means that
there are no meta-classes in the meta-model that classifies the model element.

Invalid Property Value

An invalid property value problem occurs when the value assigned to a prop-
erty of a model element breaks the constraint in its meta-model element.

5.2 Meta-Model Problems

There are some errors that occur in the meta-model. These problems do not
need a validation of the model to be found - indeed it is not necessary to
have a model that is an instance of the meta-model to find them.

Unknown Property Definition

An unknown property definition is found when a meta-model element that
represents an UML element has a constraint on a property that the element
cannot have. For example if the meta-model element has a constraint on the
property abstract declaring it to be true and the element that it represents
is a package, this will fail since a package cannot be abstract. To resolve this
problem we should either remove the property rule or change the property
rule to a valid property for the element.

Illegal Property Expression

All properties in a construct have a type. The type can be boolean, string,
numeric or of some other sort. If the meta-model states in the same example
with the property abstract that the value of the abstract property must be
a numeric value, the meta-model states something about the model that
cannot be true since the property abstract is a boolean. The constraint on
abstract to be numerical is therefore an illegal property expression.

Unknown Meta-Class Definition

An unknown meta-class definition is when the meta-model has an element in
it that cannot be resolved to a valid UML construct. The most likely source
to this error is a misprint when typing the stereotype of the element. If

the creator of the meta-model misses an "s" in "class" (thus writing "clas")

32 5.2. META-MODEL PROBLEMS

it will not be possible to resolve the element to a valid construct. In this
case the only correct suggestion would be to prompt the user to change the
stereotype of the element so that it becomes a valid UML construct.

Meta-Model Ambiguity

The meta-model will contain an ambiguity if for one model element there is
more than one possible meta-element that can classify it.

Part 11

Correction of Models

33

Chapter 6

Correction Suggestions

This chapter describes different approaches to correction suggestions for er-
roneous models in general and explain the proposed approach to correction
suggestions in detail.

6.1 Different Approaches to Correction Sugges-
tions

The main challenge when suggesting corrections is to keep the algorithm
simple and generic for all sorts of UML diagrams, while at the same time
using as much information about the specific problem as possible.

6.1.1 The Simple and Generic Approach

One way to keep the algorithm simple and generic is to search for problems
in the model. For each problem in an element we handle it without caring
about what kind of element it is and without using any other information
about the element that might be gained from the model or the meta-model.
The correction suggestions can be found by running a search algorithm (e.g.
breadth-first or depth-first search) on the possible operations for changing a
model to find a sequence of these operations that would solve the problem.
For example, the algorithm could have the operations "add attribute",
"delete attribute" and "change attribute" together with a few others, and by
searching these operations it could find a sequence of operations that would
produce correct the problem found during model validation. This approach
would basically be a brute-force approach where computer power and search
algorithms solves the problem of finding a correct model which is close to
the erroneous model. The algorithm would not be intelligent in any way and

35

3®%.1. DIFFERENT APPROACHES TO CORRECTION SUGGESTIONS

would not use extra information about common errors, common solutions to
these, semantic meaning of the diagram, etc.

The advantage with this approach is that the algorithm is simple and
generic. The approach automatically works for any type of UML diagrams
and probably also for later extensions to the specification of the language.
The difficulties will only be in determining which changes could be made
to a model element and then to apply them to the model. This problem
is of course non-trivial, since an operation "change attribute" could be very
complex if the algorithm wants to give suggestions for possible changes to
the name of an element for example. If it would like to present suggestions
for changing the stereotype of an element, the new stereotype really could
be any string or any string that is a known stereotype from the meta-model
if the algorithm was a bit more complex.

Another advantage with this approach is that even though it rarely will
happen, the algorithm will be able to find new solutions to a problem that
no-one has thought about before or a solution that is very specific for a given
problem. This is loosely related to other types of problems where different
search algorithms have provided optimal solutions to a problem or finding
completely new approaches to an old problem.

The disadvantage with this approach is that the algorithm will have a high
complexity, since the search tree would have a high branching factor and the
search depth would get quite high. There are other drawbacks that could be
even more serious, e.g. the algorithm will mostly produce suggestions that
have no impact on the model correctness at all. Since the algorithm doesn’t
use any additional knowledge that it may have about solutions to different
problems, the algorithm will always try operations like "change attribute"
even though the error might be completely unrelated.

The algorithm will probably also find strange solutions that it might know
would never be what the user intended, e.g. deleting all elements in the model
and thus assuring that no inconsistencies exist. The fact that the algorithm
is able to find new solutions is in itself an advantage, but most of these new
solutions are so unlikely that the user would want to commit that it may in
fact prove to be a disadvantage of the algorithm.

6.1.2 The Rule-Based Approach

On the other extreme end of possible approaches to an error correction algo-
rithm, an algorithm which uses as much information and semantics from the
model as possible could be produced. This approach would typically take
an error and analyze and categorize it. This could be seen as some kind of
rule-based system which has specially written rules for every kind of error

CHAPTER 6. CORRECTION SUGGESTIONS 37

that could exist in a model.

This approach would be very suitable for a simple model validation al-
gorithm which also provides some kind of basic hints about what could be
done to correct the errors found. E.g. if the validation algorithm finds an
inconsistency between an element and its meta-element based on a rule in
the meta-element, the typical correction suggestion could be to "change the
attribute so it conforms to this rule". These kinds of somewhat fuzzy correc-
tion suggestions can be useful in many cases, but they are in reality nothing
more than a textual presentation of the error.

To take this algorithm to a higher level of error correction where the
suggestions are useful and corrects the problem found, it would take a lot
of time and too many special rules to make this approach feasible. The
algorithm would quickly degrade to a "what if"-scenario where each possible
case has to be solved separately.

The advantage with this approach is that the quality of the given cor-
rection suggestions could be very high, given that a good-enough problem
classification could be achieved. In this case the algorithm would produce
very precise solutions to each specific error. Another advantage for this ap-
proach is that the algorithm would be efficient and have a low complexity
since it is just a mapping from the problem to a predefined solution that will
not need any time-consuming search.

The disadvantage with this method of solving the problem is that it may
prove impossible to categorize errors with such a precision that a correction
suggestion based on these categorizations is good enough. Even if it was
possible to get the required precision on error categorization, there would
be problems with implementing this algorithm, since it would take a great
amount of rules for each type of error that might occur in a model. The
algorithm will also be very sensitive to change in the UML specification,
where each change has to be included in the algorithm and every addition to
the language would need new rules to handle the additions.

6.1.3 A Combination of Approaches

The best thing would be a combination of the two approaches above to
get the advantages from both, while at the same time getting rid of the
drawbacks. There are many ways that this could be done, and all have
different advantages of their own. The general combination approach would
include a search to make it possible to find new solutions and to get a more
flexible and robust solution. It would also incorporate knowledge that the
algorithm has about models and common problems, and use the semantics of
the model to guide the search for an error correction suggestion. The search

38 6.2. OUR APPROACH TO CORRECTION SUGGESTIONS

would thus be a directed search or a search using a heuristic function.

One way is to categorize the errors that are found during validation of
the model and from this categorization perform a directed search for different
solution. E.g. a problem where an attribute of an element is incorrect. Ex-
amining the element more closely tells the algorithm that this is a element of
the UML-type Class and that it is the attribute name that does not conform
to the meta-model. With knowledge about common errors the algorithm
suggests that the best way to solve this problem is to change the name, but
a search also suggests that it might be possible to change the stereotype of
the element to have it match to another meta-element. It might also suggest
that moving the element to another part of the diagram (e.g. changing an
association) might solve the problem as well.

The main problem in finding a good algorithm that is a combination
of the two extremes is to find a good level of abstraction where as much
information and semantics as possible is used without getting swamped in
different rules and possibilities for each type of error.

6.2 Our Approach to Correction Suggestions

Our approach to finding correction suggestions to problems found in a model
is a combination of the two extreme approaches explained above, as outlined
in sec 6.1.3 A combination of Approaches. The algorithm finds a good balance
between using as much information from the model and the meta-model as
possible, while at the same time keeping the algorithm quite simple and
generic.

The extension to MetaModelAgent that have been developed is a system
divided into three parts. The first part uses the list of problems found by
the validation in MetaModelAgent. This part generates all the correction
suggestions for each problem. The second part of the system takes each
correction suggestion and calculates the probability that the suggestions is
the "best" suggestion, i.e. how likely it is that this suggestion is the one
the user would like to commit. The third part connects each suggestion
to a refactoring action, which allows the user to commit a suggestion, i.e.
to let the system automatically solve the problem according to the selected
suggestion.

6.2.1 Finding Correction Suggestions

The first step of the system is to generate all possible suggestions to a prob-
lem. The system takes a problem from the validation algorithm and ana-

CHAPTER 6. CORRECTION SUGGESTIONS 39

lyzes this problem. From the problem the algorithm gets information about
what kind of problem it is (see Chapter 5 Definition of Model and Meta-
Model Problems for definitions of the problems) and what elements are af-
fected by it. Depending on what kind of problem it is, the algorithm has a
predefined set of suggestions types that will be generated. Suggestions are
divided into the following groups: add, delete, change and move suggestions.

Suggestions of the type add is used for suggestions where the algorithm
adds a model element to the model. This may be used to solve problems
where the model does not have the required number of child elements of a
certain kind.

Suggestions of the type delete are used for suggestions where the algo-
rithm deletes a model element to solve the problem. This may be the case
when it has more model elements in the model than the allowed number of
elements of the given type at this place in the model.

Suggestions of the type change represent changes to a model element,
usually by changing a property of the element. This could for example rep-
resent a change in the name of the element, the stereotype of the element or
perhaps some other attribute. These suggestions may solve problems where
there is an illegal attribute value, but may also be used to change the model
element so the type of the element changes, i.e. so that it is described by
another meta-model element than before. In this case the suggestion may
solve multiplicity problems as well as many other problem kinds.

Suggestions of the type move represent solutions to a problem where the
algorithm moves a model element to a different part of the model. This may
solve multiplicity problems as well as other kinds of problems.

The algorithm will try to find suggestions of different types depending on
the problem. Some kinds of problems will be tested for a valid suggestion
of the type add and change, while other problem kinds lead to a test of
suggestions with type delete and change.

For a given problem, the algorithm may produce several suggestions of
the same type. For example the system may produce multiple suggestions
of the type add, where each suggestion represents the adding of a a new and
different model element. The difference between the suggestions may be the
type of the element to be added for example. In the same way it may produce
several suggestions of the type change, where each suggestion represents a
change of different attributes of the model element or changes in different
model elements.

40 6.2. OUR APPROACH TO CORRECTION SUGGESTIONS

6.2.2 Calculating Suggestion Probability

To be able to present the error correction suggestions for the user in a user-
friendly way, to enhance the usefulness of the system and to avoid invalid
correction suggestions to be presented the system calculates the probability
for each suggestion that this suggestion is a valid and plausible correction
suggestion. For each problem the suggestions are ordered based on this prob-
ability. There is also a threshold level for probabilities, ensuring that sug-
gestions that have too low probability are not shown. This makes it possible
to filter suggestions that are either too unlikely or that does not solve the
problem.

It is important that the user will see the suggestion that he or she is
most likely to apply when the suggestions are presented in the list. It is
also important that the user is not flooded with too many suggestions. Even
though the search for suggestions is exhaustive the user must not get all
possible solutions, only the ones that are relevant.

To calculate the probability for a suggestion the system once again ex-
amines the problem. Based on the kind of the problem and the type of the
suggestion, the system has different algorithms for calculating the probabil-
ity of the given suggestion. For example a suggestion of the type change for
an overflow problem may look at how many attributes has to be changed to
make it match against another meta-model element. It will also take into
account whether the model element to be changed has child elements of its’
own and how they would be affected by this change. If they are affected
negatively (e.g. not being allowed after the change), the suggestion is more
unlikely and gets a lower probability than if the model element did not have
any child elements.

The algorithm for calculating probabilities for each suggestion is based on
constants given from a preference file. After the system has done the analysis
of each suggestion it uses those constants to calculate the probability for the
given suggestion. This makes it easy to change which types of suggestions are
presented, in what way they are prioritized, what factors should be considered
during analysis and what threshold levels should be used.

An extension to our suggested system could be to let the system auto-
matically change these constants depending on how it is used. See Chap-
ter 12.2 Future Work for more details about this.

6.2.3 Suggestions for Different Problem Kinds

As previously stated the algorithm finds suggestions of different types de-
pending on the problem kind of the given problem. This section will describe

CHAPTER 6. CORRECTION SUGGESTIONS 41

which types of suggestions the algorithm finds for each problem kind and how
they may solve the problem.

Note that this section describes the suggestions for each problem kind,
even though many suggestions are quite similar between different problem
kinds. A remove suggestion for a child overflow problem does not differ
much from a remove suggestion for an invalid child problem, but since there
almost always is some difference this section describes them completely for
each problem kind. This may lead to some parts of the text being identical.

Child Overflow

To correct a child overflow problem the algorithm examines the following
suggestions.

Remove one of the child elements

To correct a child overflow the algorithm tries to find a solution where
it removes one of the child elements that are indicated by the child overflow
problem. This includes finding all model elements that are instantiations of
the meta-class that is being indicated as the child overflow meta-class. For
each of these model elements the algorithm produces a remove suggestion,
i.e. a suggestion to remove the model element.

When calculating the probability for each remove suggestion the algo-
rithm take into account whether the model element to be removed has child
elements and whether it is being referred to by other model elements in the
model. In each of these cases the probability that the user wants to delete
the model element is significantly lowered.

Change one of the child elements

Another suggestion being tested by the algorithm is to change the type or
a key property of one of the child elements so that it will be an instantiation
of another meta-class. For each child element of the overflowing type, the
algorithm looks at all meta-classes which are allowed at the same place in the
model as the current meta-class and for each for these meta-classes creates
a change suggestion, i.e. a suggestion to change the given child element to
match the new meta-class.

By committing a change suggestion the number of model elements of the
overflow type is reduced by one, but at the same time the number of model
elements that is an instantiation of the meta-class that the element is being
changed to is increased by one. Because of this it is important that the
algorithm check the multiplicity of the meta-class that it changes the model
element to, so that it doesn’t create a new child overflow problem.

When calculating the probability for each change suggestion the algo-
rithm take into account how many properties of the model element it has

42 6.2. OUR APPROACH TO CORRECTION SUGGESTIONS

to change and also which properties it has to change. This means that a
change suggestion which has to change the name, stereotype and perhaps
another key property of the model element as well is much more unlikely
than a suggestion to change only the name of the model element.

The system also use the probability calculation to filter away otherwise
occurring correction suggestions. The change suggestions that are filtered for
are changes of the type of the model element that makes no sense. To ensure
this the algorithm uses the following set of rules for type changes:

e Packages cannot change their type, i.e. a package is always a package
since there is no sense in talking about changing a package to another
type of model element.

e A diagram can only be changed into other types of diagrams.

e A relation can only be changed into other types of relations, i.e. it
might be okay to change an aggregation to a composition, but not to
change an inheritance to an interface.

e All other types of model elements can be changed into all other types
of model elements.

These rules give the algorithm a crude way of filtering away type changes
that are too unlikely and that are close to impossible to commit automati-
cally. These rules could however be developed further to allow changes be-
tween other types of element, but by classifying them as more or less likely.
For example it would be more likely to change a model element used in Class
Diagrams to other types used in Class Diagrams rather than in other types
of UML-diagrams. This extension has not been researched within the scope
of this project, since in most cases the meta-model won’t allow these changes
anyway.

In the current implementation of the system, the algorithm does not
check any child elements to the model element being changed. This would
be an important extension to the system, since the current implementation is
running a risk of introducing new problems. When changing key properties
of the model element the algorithm is changing which meta-class the model
element is instantiated from and this also changes whether the child elements
of the model element would be allowed or not.

Move a child

The third type of suggestion that the algorithm finds for the child overflow
problem is move suggestions. The correction the algorithm tries to find is
to move one of the child elements of the model element which has the child

CHAPTER 6. CORRECTION SUGGESTIONS 43

overflow problem to some other model element in the model. This would
reduce the number of child elements with one.

To find a valid move suggestion, the system takes the child elements and
finds all other places in the model where one of them may be placed.

More specifically this is done by starting to find all meta-classes in the
meta-model that could classify the given child element. This is done for
each of the child elements that are indicated by the child overflow problem.
For each of the meta-classes the system finds, the algorithm examines all
meta-classes in the meta-model that could own instances of the meta-classes
that could classify the child element. I.e. the algorithm find all the parents
to all the meta-classes in the meta-model that could classify the given child
element. For each parent the algorithm finds instantiations of the parent in
the model, i.e. it finds model elements that are instantiated by the parent.
These model elements are then plausible parents to the child element that
the algorithm wants to move and thus the algorithm generates a suggestion
to move the child element to the found parent model element.

To ensure that the algorithm does not present move suggestions that are
not valid, it checks that the move suggestion does not create a new child
overflow problem in the model element that it moves the child element to.
It also checks that the new parent that is being suggested is not the same as
the current parent, since it will not solve any problem to suggest to move a
child element from its’ current position to the same position again.

When calculating the probability for a move suggestion the algorithm
does not only filter for the above-mentioned cases, it also looks at whether
the child element has children of its’ own and whether it is being referred to
by other elements. Both these factors make it less likely that the user intend
to apply that suggestion.

Child Underflow

To correct a child underflow problem the algorithm only examines the fol-
lowing suggestion.

Add a child element

To correct a child underflow problem the only correction suggestion that
makes sense is to add a new model element of the type that is indicated by
the child underflow problem. A new element is created with default-values
or by user-interaction to get the values for each property in the new model
element. Read more in section 6.2.5 Applying Suggestions Using Refactoring.
about committing suggestions and user-interaction.

44 6.2. OUR APPROACH TO CORRECTION SUGGESTIONS

Reference Overflow

To correct a reference overflow problem the algorithm examines the following
suggestion.

Remove one of the references

To correct a reference overflow problem the only type of suggestions the
algorithm will try to find is remove suggestions. For each of the references
that are indicated by the reference overflow problem it generates a remove
suggestion to remove the reference.

Unfortunately there is no good way of giving a probability on the reference
remove suggestion since there is nothing that helps us tell each reference
apart. This means that all remove reference suggestions generated for one
reference overflow problem will have the same probability.

Since references are only used in diagrams, this suggestion translates to
taking one element away from a diagram.

Reference Underflow

To correct a reference underflow problem the algorithm examines the follow-
ing suggestion.

Add a reference

The only plausible suggestion that would solve a reference underflow
problem is to add a reference to a model element that is an instantiation
of the meta-class given by the reference underflow problem. This suggestion
will need some user-interaction to let the user indicate which model element,
should be referred to (choosing from all the matching model elements). Read
more about committing suggestions and user-interaction in section 6.2.5 Ap-
plying Suggestions Using Refactoring.

Since references are only used in diagrams, this suggestion translates to
adding a model element in a diagram.

Invalid Child

To correct an invalid child problem the algorithm examines the following
suggestions.

Remove the invalid child element

To correct an invalid child problem the algorithm generates a suggestion
to remove the child element that is causing the invalid child problem.

When calculating the probability for the remove suggestion the algorithm
takes into account whether the model element to be removed has child el-
ements and whether it is being referred to by other model elements in the

CHAPTER 6. CORRECTION SUGGESTIONS 45

model. In each of these cases the probability that the user wants to delete
the model element is significantly lowered.

Change the invalid child element

Another suggestion being tested by the algorithm is to change the type or
key property of the child element so that it will be an instantiation of another
meta-class. The algorithm looks at all meta-classes which are allowed at the
same place in the model as the current meta-class and for each for these
meta-classes creates a change suggestion, i.e. a suggestion to change the
child element to match the new meta-class.

By committing a change suggestion the algorithm reduces the number
of model elements of that type by one, but at the same time increase the
number of model elements that is an instantiation of the meta-class that
the element is being changed to. Because of this it is important that the
algorithm checks the multiplicity of the meta-class that it changes the model
element to, so that it does not create a child overflow problem.

When calculating the probability for each change suggestion the algo-
rithm takes into account how many properties of the model element it has
to change and also which properties it has to change. This means that a
change suggestion which has to change the name, stereotype and perhaps
another key property of the model element as well is much more unlikely
than a suggestion to change only the name of the model element.

The algorithm also uses the probability calculation to filter away other-
wise occurring correction suggestions. The change suggestions it filters for
is changes of the type of the model element that makes no sense. To ensure
this it uses the following set of rules for type changes:

e Packages cannot change their type, i.e. a package is always a package
since there is no sense in talking about changing a package to another
type of model element.

e A diagram can only be changed into other types of diagrams.

e A relation can only be changed into other types of relations, i.e. it
might be okay to change an aggregation to a composition, but not to
change an inheritance to an interface.

e All other types of model elements can be changed into all other types
of model elements.

These rules give the system a crude way of filtering away type changes
that are too unlikely to occur and that are also close to impossible to commit
automatically. These rules could be developed even further to allow changes

46 6.2. OUR APPROACH TO CORRECTION SUGGESTIONS

between other types of element, but by classifying them as more or less
likely. For example it would be more likely to change a model element used
in Class Diagrams (see UML-specification section) to other types used in
Class Diagrams rather than in other types of UML-diagrams. This extension
has not been researched within the scope of this project, since in most cases
the meta-model won’t allow these changes anyway.

In the current implementation of the system, the algorithm does not
check any child elements to the model element being changed. This would
be an important extension to the system, since the current implementation is
running a risk of introducing new problems. When changing key properties
of the model element the algorithm are changing which meta-class the model
element is instantiated from and this also changes whether the child elements
of the model element would be allowed or not. This is not something the
algorithm is examining today, but it would make a securer system if it were
to be implemented.

Move the invalid child element

The third type of suggestions that the algorithm finds for the invalid
child problem is move suggestions. The correction it might find is to move
the child element of the model element which has the invalid child problem
to some other model element in the model where the child element would be
allowed.

To find a valid move suggestion, the system takes the child elements and
finds all other places in the model where one of them may be placed.

More specifically this is done by starting to find all meta-classes in the
meta-model that could classify the given child element. For each of the meta-
classes the system finds, it examines all meta-classes in the meta-model that
could own instances of the meta-classes that could classify the child element.
Le. it examines all the parents to all the meta-classes in the meta-model that
could classify the given child element. For each parent it finds instantiations
of it in the model, i.e. it finds model elements that are instantiated by the
parent. These model elements are plausible parents to the child element that
the algorithm is trying to move and thus it generates a suggestion to move
the child element to the found parent model element.

To ensure that the algorithm does not present move suggestions that are
not valid, it checks that the move suggestion does not create a child overflow
problem in the model element that it moves the child element to.

When calculating the probability for a move suggestion the algorithm
does not only filter for the above-mentioned cases, it also examines whether
the child element has children of its’ own and whether it is being referred to
by other elements. Both these factors make it less likely that the user intend
to use that suggestion.

CHAPTER 6. CORRECTION SUGGESTIONS 47

Invalid Reference

To correct an invalid reference problem the algorithm examines the following
suggestion.

Remove reference

The only suggestion that is generated for an invalid reference problem
is to remove the reference. Since references are only used in diagrams, this
suggestion translates to removing a model element in the diagram.

Invalid Property Value

To correct an invalid property value problem the algorithm examines the
following suggestion.

Change property value

The only suggestion that is generated for an invalid property value prob-
lem is to change the property value.

In some cases this correction suggestion is committable without any user-
interaction. This is true when the guidelines given by the meta-model implies
that there is only one option of which value the property should have. More
specifically this may happen in the following cases:

e The property is a string and the meta-model specifies what the string
should be (in comparison to a regular expression where it is not possible
to generate a valid input without user interaction)

e The property is a boolean, which means the algorithm only inverts the
current value, i.e. true becomes false and false becomes true.

6.2.4 Meta-Model Errors

In the current implementation of the system it does not create any correction
suggestions for problems that occur due to meta-model errors. This is a
feature that might be an interesting area for further research and work, but
it is not within the scope of this project. Automatic correction of the meta-
model is not an option that should be available to any user of the system,
but rather to a specific person or role in the project.

6.2.5 Applying Suggestions Using Refactoring

The third part of the system allows the user to commit or apply a certain
correction suggestion. To enable this functionality a suggestion is constructed
of a set of refactoring actions that should be committed to apply the whole

48 6.2. OUR APPROACH TO CORRECTION SUGGESTIONS

suggestion. Each refactoring action is an atomic action, i.e. a single change
to the model.

The different refactoring actions that the system uses is add element,
move element, change attribute and delete element.

Some of these refactoring actions may need user interaction when being
committed. This depends on the type of refactoring action, but also on what
elements they work on. A delete action will never need user interaction,
except if the system wants to warn the user that deletion of the element
also will delete child elements or to warn about other side effects of the
refactoring. An add action may however need more interaction with the
user. When the user commits an add action, the type of the element that
should be created is known. However, not all attributes of the element may
be known. The attributes that are controlled by the meta-model might be
easy to set to the value required by the meta-model, but attributes that are
not controlled by the meta-model could have any value. If the meta-model
has a regular expression to express what kinds of values are correct, e.g.
for the name attribute, it may be impossible to set a value without user-
interaction. The same is true for change actions when handling attributes
that are not explicitly specified in the meta-model what values they should
contain.

One way of handling this is to create a new element or change the element
to an element with default values, but this approach may lead to new prob-
lems in the model. The default value of a new element might for example
break a rule of the meta-model, a problem that is hard to check and correct
before committing the action.

Chapter 7

Meta-Model Guided Model
Refactoring

Refactoring is a technique for restructuring existing code by changing the
internal structure without changing the behavior of the code. The restruc-
turing is done by changing a part of the code, for example by moving it, but
at the same time changing all references to this part of code so that they
reflect the change. The change made to the code could be the renaming of a
variable or a method, to move a method from one class to another or to move
classes between packages. Each change that is done through refactoring is
often quite small and have little impact on the total structure of the code,
but a whole set of refactoring steps can restructure the code totally and make
it easier to use, more transparent and perhaps ensure that if follows a design
pattern.

Refactoring [22] is a technique that has become common in Integrated
Development Environments (IDE) such as Microsoft Visual Studio, Eclipse
and many others.[4]

7.1 Model Refactoring

The same concept of making changes to structure without changing the se-
mantics and behavior can be applied to models. This is called model refac-
toring. Each refactoring step can be a change in one model element or to
move an element from one place in the model to another.

One can argue that moving an element or changing its’ name will alter
the semantics of the model, but if one sees the model as a view of the system,
a change in the model that describes the system will not change the func-
tionality of the system, but the way in which it is structured and presented

49

50 7.2. USING THE META-MODEL AS GUIDANCE

in the model. This means that changing the name of a model element or
relocating an element will not change the semantics of the model.

Model refactoring is provided in some modeling tools as help for the user
of the program to make changes to the model. In RSA, the user can use
model refactoring to move an element or to change the name.

Using model refactoring in RSA is however not as helpful as it could be.
When choosing to move an element through refactoring, the user will not gain
any additional help from the program as to the new placement for the model
element. The modeling tool does not have any knowledge about semantics of
the model and because of this cannot decide where the most suitable place
for a model element would be, or even where it is allowed and not.

7.2 Using the Meta-Model as Guidance

By using the extra information that is gained from the meta-model about
the semantics in the model and the structure that the model must follow, the
system can give additional help to the user in the refactoring steps provided
by this project. This project has investigated a couple of different refactoring
actions and how the information from the meta-model can be used to give
additional help to the user.

The four model refactoring actions that have been investigated are add
element, change element, remove element and move element.

e Add element

The action of adding an element to the model is the same as creating a
new model element in a given place of the model. If the tool does not
consider the meta-model or if there is no existing meta-model for the
model, the element that is to be created could be any UML-element
and have any attribute values allowed by the UML-standard.|[32]

By using the information in the meta-model about which element types
that are allowed in a specific place in the model, the choice can often
be reduced to a couple of different element types. E.g. in a package
for Java classes the user will only be able to add classes, interfaces and
packages.

Furthermore the meta-model could be used to restrict the user to only
choose valid attribute values for the created element, e.g. by only
allowing correct names if there is a rule for the name of the element,
or by only allowing the correct value of a Boolean attribute if there is
a rule in the meta-model for this attribute.

CHAPTER 7. META-MODEL GUIDED MODEL REFACTORING 51

e Change element

If the tool does not consider the meta-model the changes to a model
element could be any possible change that would be allowed by the
UML-standard for this kind of element.

The tool can restrict the user to only perform allowed changes to an
element by using the meta-model. This have to be done carefully, since
a change in an element could be restricted by the current meta-class
that the model element is connected to, but after the change is made
the model element should be connected to another meta-class in the
meta-model which might allow the change. This is the case if the
changed attribute is a key attribute in either the existing meta-class or
the potentially new meta-class for the model element.

By performing a change to a model element so that it is classified by
another meta-class the system has altered the semantics of the model,
which might be seen as breaking the definition of refactoring. However
the need to be able to perform such changes to correct errors in a
model is quite evident, see Chapter 6 Correction Suggestions for more
reasoning about this.

e Remove element

When removing a model element the information from the meta-model
could be used to alert the user if she or he is about to introduce an
error into the model. This should happen if by removing the element
from the model, the number of instances of the same meta-class as
the model element decreases below the minimum number of instances
specified by the meta-model. For example the meta-model might state
that there must be at least one element of a specific type. If the user
tries to remove a model element of this type and there are no other
elements of the same type, the user should receive a warning regarding
this.

e Move element

Moving an element in the model without considering the meta-model
is a refactoring action that lets the user move the element to any place
in the model. Since the tool does not have any knowledge about the
semantics of the model or the rules for the structure, any element is
allowed anywhere in the model.

By using the information about semantics and structure from the meta-
model, the tool can restrict the user to only moving an element to a

02

7.2. USING THE META-MODEL AS GUIDANCE

place where it would be allowed. This will often reduce the number of
possible moves greatly, e.g. if the user wants to move an element of
the type Class and we only have one package that is allowed to contain
classes, this will be the only option for the user.

Chapter 8

Implementation

The objective of this project is to develop a prototype for error correction in
UML-models. This chapter gives a summary of the implementation of the
system.

The system developed during this project is a prototype that serves as
a proof of concept for our proposed solution to error correction in UML-
models (see Chapter 6 Correction Suggestions for details about the proposed
solution). Since the system produced is a prototype and only parts of a
full-fledged system for error correction have been developed, the resulting
design and architecture uses a modular approach to make it possible to add
parts of functionality as they are developed. The system that is developed
during this project is an extension to an existing program, MetaModelAgent,
and have used MetaModelAgent as a library of functionalities - sometimes
limiting what have been possible to do during development.

The fact that MetaModelAgent for Eclipse (see Section 3.5 MetaModelA-
gent for more information about MetaModelAgent) have not been completely
finished during this project, but have evolved and been changed throughout
the development of the extension, have had impact on the evolution of the
extension as well. During the project there has been a close collaboration
with Objektfabriken throughout the entire development process with discus-
sions about how to design the system and what functionality that are needed
for our extension.

MetaModelAgent is implemented on top of the frameworks Eclipse Plat-
form, EMF and UML2 (refer to Chapter 3 The Modeling Environment for
details about these frameworks) can be seen in Figure 8.1. EMF and UML2
are large frameworks containing much functionality for modeling. Much of
this functionality is not needed in MetaModelAgent, e.g. a model element in
EMF and UML2 saves much information about the elements that are irrele-
vant to MetaModelAgent. To separate MetaModelAgent from this irrelevant

23

04

information, an abstraction layer is created between MetaModelAgent and
the underlying platforms. This abstraction level consists of two major parts,
Model Access and Meta-Model Access, which give the functionality for ac-
cessing, manipulating and working with models and meta-models. These
parts work as a facade layer that presents abstract methods that are avail-
able for model manipulation. The third major part of MetaModelAgent is
the parser which uses the model access and meta-model access methods to
parse the model against its’ meta-model to find errors in it.

Parser

Model Access Meta Model Access

umLz
(Support for UMLZ2.0-models)

Eclipse Modeling Framework (EMF)
(Support for structured data models)

Eclipse 3.x platform
(Workbench infrastructure, SWT, JFace, etc.)

Figure 8.1: Implementation of MetaModelAgent on the Eclipse Platform.

The system developed in this project address two new features for Meta-
ModelAgent, model refactoring and error correction of UML-models, both
guided by the meta-model. Both these features have been developed as an
extension to MetaModelAgent, using MetaModelAgent as provider of the er-
rors in the model and of functionality for accessing and manipulating models
and meta-models.

The extension to MetaModelAgent that have been implemented is planned
to be integrated completely into MetaModelAgent. Figure 8.2 shows how this
integration will be made. Note that the extension is integrated on the same
level as the parser.

The core of the developed extension for MetaModelAgent is the model
refactoring part. This part provides functionality for generating model refac-
toring actions and to commit a refactoring action. The different refactoring
actions that are available are to add, remove, change and move a model ele-
ment. See Chapter 7 Meta-Model Guided Model Refactoring for more details

CHAPTER 8. IMPLEMENTATION 99

about this part. The other major part of the developed extension is the error
correction. This part uses the modeling refactoring functionality to express
the correction suggestions to errors in the model as refactoring actions. The
error correction feature takes problems or model errors from the parser and
finds correction suggestions to these. See Chapter 6 Correction Suggestions
for more information about how this is done. Each correction suggestion is
described in terms of refactoring actions. After creating the set of correction
suggestions for a specific problem in the model, the model correction uses
a probability generator to calculate how likely it is that the user wants to
apply each specific correction suggestion to the model.

MetaModelAgent

m Model Refactoring || Model Correction
o e

UML2Z
(Support for UMLZ2.0-models)

Eclipse Modeling Framework (EMF)
(Support for structured data models)

Eclipse 3.x platform
(Workbench infrastructure, SWT, JFace, elc.)

Figure 8.2: Implementation of the extension to MetaModelAgent.

26

Chapter 9

Related Modeling Environments

This chapter describes some of the other tools and products for modeling and
meta-modeling available in the market today. It compares these products to
MetaModelAgent to find differences between the tools and functionalities
that are shared among the different systems.

9.1 The Generic Modeling Environment

The Generic Modeling Environment (GME) [19] is a modeling tool in which
it is possible to create model domains. The tool allows the user to create
their own meta-models that describes the domains of the models. When
users create a new model, they choose a meta-model to use as the domain
for the model. The meta-model gives the domain the functionality for the
model and configures the tool to allow only modeling within that domain
and its’ specified rules.

9.1.1 Meta-Modeling in GME

The meta-model in GME describes entities, their relations and their con-
straints. An entity in GME is the same as a model element in MetaModel A-
gent. An entity could be any object that the user might want to model in the
domain, e.g. an Actor to an OR-gate. The meta-model in GME is referred to
as the model domain. By letting the user describe their domain, the tool is
able to provide a domain-specific tool that is configurable for many different
domains.

A superset to UML class diagrams make up the modeling language for
domains in GME. The addition that is made to class diagrams is the func-
tionality to change the way an element is being visualized and presented,

o7

58 9.1. THE GENERIC MODELING ENVIRONMENT

which helps the tool present the model in a way that suits the user. Each
entity that is an available entity in the model is described in the domain by
an UML class element. As in MetaModelAgent, the stereotype of the entity
is used to describe which meta-model element it is.

The basic constraints between elements are set by using multiplicity on
entity relations. To express more complex constraints GME uses Object
Constraint Language (OCL). OCL can constrain a single entity or the en-
tire domain. An OCL constraint on a single entity could for instance be to
control the value of a property. An OCL constraint on the whole domain ex-
presses relations that the entire domain should conform to, e.g. constraining
the occurrence ratio between two entities in the model or the containment
hierarchy of an entity.

9.1.2 The Modeling Environment

GME is able to create meta-models for any type of model domain. A domain
could for example be anything from UML to circuit diagrams to business
processes. When GME is in modeling mode a domain is set to control what
actions are possible and how entities are presented. Only actions that are
valid actions according to the domain will be available in the tool. This
means that it is not possible for a user to add an entity to the model that is
not in the domain or to put a relationship between two model entities that
is not allowed to have a relationship by the domain. Since the domain has
total control over what actions the user can take, the numbers of errors a
user can create in the model are very limited.

9.1.3 GME Compared to MetaModelAgent

MetaModelAgent is similar to GME in numerous ways. Both tools have
identified the value of modeling new model domains in the tool and then
utilize the information about the domain to verify models. They both use
UML class diagrams to specify the meta-model and they both put constraints
on entities or elements.

Both MetaModelAgent and GME can express simple relation constraints
and property constraints. However, MetaModelAgent cannot express as com-
plex constraints as GME since it does not use OCL today. MetaModelAgent
will therefore not be able to put constraints on the entire model or con-
straints on an element that would need information that is not present in the
property that is constrained.

GME is also a general modeling tool letting the user do modeling for as
good as any domain, which MetaModelAgent is not. MetaModelAgent is

CHAPTER 9. RELATED MODELING ENVIRONMENTS 59

limited to what it can and cannot model by the environment it is used in.
Since MetaModelAgent is built upon UML2 and EMF, it is able to control any
domain that is implemented in EMF. In its current state MetaModel Agent is
only available for RSA and can therefore only build meta-models for UML.

The important difference between MetaModelAgent and GME is that
while it is possible for the user in MetaModelAgent to add entities to the
model that are not described by the meta-model and to set values that are
not correct according to the meta-model, it is not possible in GME. Since
the user cannot create errors while modeling in GME in the same way as
the user can in MetaModelAgent, the model correction feature developed for
MetaModelAgent would be of little or no use in GME.

One way to describe the difference between the meaning of the meta-
models in MetaModelAgent and GME is that the meta-model in MetaMod-
elAgent lets the user define guidelines for how their model should look and
work and to define rules that must be followed by the model. In GME on
the other hand, the meta-model is a definition of the modeling domain, de-
scribing the domain and what shall be possible to model in it. In GME the
environment and the tool changes to reflect the domain in use.[20)]

9.2 A Tool for Multi-Formalism Meta-Modelling

A Tool for Multi-Formalism Meta-Modelling (AToM3) is another tool for
creating domain specific environments. It relies on a formal basis of graphs.
The approach of AToM3 is to consider all models and meta-models as graphs.
To validate a model against a meta-model, graph rewriting is performed to
see if the model matches the meta-model. AToM3 is developed in collabora-
tion between the Modelling, Simulation and Design lab at McGill University,
Quebec Canada and Universidad Autonoma de Madrid.|2]

9.2.1 Meta-Modeling in AToM3

To create a meta-model in AToM3 the user first has to load it with a specific
meta-meta-model. The meta-meta-model is to the meta-model the same
as the meta-model is to the model, i.e. a set of entities and constraints,
controlling what can and cannot be modeled in the meta-model. The meta-
modeling language in AToM3 is Entity Relation Diagrams (ER-diagrams)
and thus the meta-meta-model describes the ER-formalism.

AToMa3 lets the user create meta-models in a visual browser. ER-diagrams
are used to visually represent data objects and their relations and are often
used to describe databases [26]. The ER formalism is made up of entities,

60 9.2. A TOOL FOR MULTI-FORMALISM META-MODELLING

relations and cardinality, making it general enough to describe any entity in
a model, and simple constraints.

Entities have attributes that describe aspects of the entity. E.g. a meta-
model for a UML Class is an entity with attributes common to a Class
element connected to it. The attributes can for example be name, stereotype
or abstract. AToM3 can model the appearance for an entity in the meta-
model. This way AToM3 becomes a very general modeling environment,
capable of modeling any domain and presenting it in any way possible.

Constraints are divided into two groups in AToM3. The first group is
the semantic constraints and the second is graphical constraints. Semantic
constraints describe the entities attributes and relations. The simple seman-
tic relations are described by multiplicity constraints between entities in the
meta-model. To create more complex constraints that are not possible to
express by means of ER-diagrams, AToM3 uses OCL [33|. The use of OCL
makes it possible to create constraints like for example a model entity’s name
should be unique. Sometimes it could be desirable to change an entity’s ap-
pearance when some event has occurred, AToM3 handles this by letting the
user put graphical constraints on entities in the meta-model. This way we
could model one entity for both Interface and Class since their behavior is
similar, and let the appearance change depending on whether or not an in-
terface attribute is true or not.

As mentioned earlier, AToM3 relies on the graph formalism. AToM3
treats all models as graphs regardless of how they are presented or what
data they contain. The way AToM3 performs its’ model validation is by
graph rewriting. Graph rewriting has been used in many other areas to
perform e.g. program optimization [1]. AToM3 say that to their knowledge,
no one has ever applied it to formalism transformation [12]. The basic idea
behind graph rewriting systems is to have a general graph, the meta-model,
and take a model graph and try to rewrite the general graph into the model
graph [13]. This is performed by a set of rules and action in each step. The
rewriting is complete when there are no more available rules to apply to the
graph rewriting.

9.2.2 The Modeling Environment

The environment that exists today for AToM3 is sparse. It has the function-
ality it needs, but no fancy interface, since the tool is still under development.
The environment changes depending on what type of meta-model is loaded.
Hence the user can only create entities that are valid in the domain described
by the meta-model.

CHAPTER 9. RELATED MODELING ENVIRONMENTS 61

9.2.3 AToM3 Compared to MetaModelAgent

The similarities between MetaModelAgent and AToM3 are mostly on an
abstract level. If we dig deeper into their concrete implementations and
functionalities, not many things are the same. MetaModelAgent relies on
a parser that takes a model and a meta-model and then iterates over the
model to check for meta-model conformance. Any problem discovered along
the way is stored and then presented at the end. AToM3 will, as recently
described, use graph rewriting to accomplish the same thing.

At an abstract level, they have similarities. Both MetaModelAgent and
AToM3 model the meta-model in a modeling language, and although AToM3
uses ER-diagrams, it could use UML if a meta-meta-model for UML were
created. AToM3 is a more general modeling environment than MetaMode-
1Agent, able to model any domain and presenting entities in a way that suits
the user, while MetaModelAgent is today limited to UML-diagrams.

AToM3 will let the meta-model control the modeling environment and
only allow actions and entities from the meta-model to be executed and
created, much like GME. AToM3 can handle OCL-constraints, making it a
more expressive meta-modeling environment than MetaModelAgent.

9.2.4 AToM3 Compared to GME

AToM3 has more in common with GME than it has with MetaModelAgent.
Both GME and AToM3 have the same functionality and both aims at being
a general modeling environment that is controlled by a meta-model. The dif-
ference is that AToM3 can create new meta-meta-models, making it possible
to create new meta-modeling environments. At the core AToM3 and GME
works in totally different ways, but what they achieve is the same. GME is a
finished product, which one cannot say about AToM3. While AToM3 is still
a tool under development and research, GME is a stable environment ready
for use in the industry [13].

62 9.2. A TOOL FOR MULTI-FORMALISM META-MODELLING

Chapter 10
Related Work

This chapter will describe some of the related work which we have come in
contact with during our work with this thesis. Most of the research in this
area has been focused on validation of UML models and consistency checking
between different UML diagrams describing the same system. These topics
are closely related to our own, but do still not provide an easy solution to
our problem. However, much of the research is highly interesting and gave
us many new insights and starting points for our problem.

When changing an UML model it is generally hard to know what side
effects might occur and which model elements of the UML model that might
have to be changed accordingly. Briand et al. [27| proposes a solution to
impact analysis and change management on UML models. Using formally
defined impact analysis rules written in Object Constraint Language, OCL,
and a measure of distance between model elements to prioritize results based
on these OCL rules, they present a way to estimate the impacts a particular
change in the model would have.

Working with different versions of UML models is a problem addressed by
Ohst et al. [21] Their approach to detect differences between two models in-
clude classification of changes between models. To visualize these differences
they use the concept of unifying two UML models into one, thus showing
both of the models at the same time while highlighting the differences be-
tween them.

Validation of UML models is a common problem and there are many
approaches to different solutions. Shen et al. [10, 36] proposes a toolset
based on the semantic model of UML using Abstract State Machines, ASMs
(read more about ASM in [5]). By using ASMs and the ASM Model Checker
they are able to prove that the UML validation is correct with respect to the
semantic model used.

Finding inconsistencies among a set of UML models is a common prob-

63

64

lem and there are many approaches to this problem. Egyed [18] proposes a
method for doing instant consistency checking while the developer is working
with the model, through scope-based consistency checking for a number of
consistency rules.

UML is naturally not the only modeling language which have been meta-
modeled. Paige and Ostroff [34| builds a meta-model for the object-oriented
modeling language Business Object Notation, BON, using both the language
BON itself and the PVS specification language. Using the PVS theorem
prover they perform conformance checking of models against the meta-model.

Part 111

Result

65

Chapter 11

Benefits of Meta-Modeling

As stated earlier, modeling as a process is becoming more and more used
as a process in the development of software systems. The need to have
blueprints for computer programs as well as visualizing a system with models
is evident, not only as a mean for programmers to know what to code, but
also to discover faults before any code has been written [8]. Finding faults
in the design of a system before the programming phase can save a lot of
time and money since it is always easier changing the design before any
real implementation is done. If large changes are done to the design after
implementation has begun, there is a much greater risk that much of the code
will have to be rewritten to meet the new demands of the changed design.

To get the most out of modeling and finding design faults as early as
possible in the development process it is important that there are no errors
in the model itself. To make the process of modeling as valuable as possible
to a company developing software systems, no new type of faults should
be able to be introduced by the model. If the modeling process introduces
new types of faults that can be made, the company has not gained as much
value from modeling as possible. If the model contains errors, it is likely
because the system being modeled is so complex that the possibility of the
modeler making a mistake is substantial. This is where the potential of
MetaModelAgent and the extension to it provided by this project can be
really beneficial.

11.1 The Benefits of MetaModelAgent

MetaModelAgent introduces a way of controlling the modeling environment
in a non-intrusive way. The modeling environment is still able to create any
correct UML constructions, but the system will alert when and where faults

67

68 11.2. CORRECTION OF MODEL ERRORS

that are not allowed by the meta-model are being made. The fact that a
modeler will be notified when a fault has been made will make the modeling
process more valuable since any faults made by the modeler can be corrected
by the modeler at the time of creation, instead of during a time consuming
model review process.

Using meta-models will help to ensure that a model is correct from the
beginning, thus saving time and money by being able to skip or cut down
on time spent on model review processes. Using MetaModelAgent as a part
of a software process will be most beneficial in large development processes
rather than small scale software projects, since these are often more com-
plex, the models might be created by more than one person and they might
follow a set of different guidelines that come from processes being used in the
development process.

MetaModelAgent can also be a valuable asset for companies that strive to
follow quality assurance models, e.g. CMM. Quality might be measured by
how reproducible, verifiable and documented each step of the development
process is and using MetaModelAgent to verify models against guidelines will
aid a company in following a quality assurance model.

11.2 Correction of Model Errors

The model correction extension to MetaModelAgent that has been developed
will greatly improve the speed at which a modeler can model a correct model
that conforms to a set of guidelines. When a modeler creates a fault in the
model, the modeler needs a way of correcting that fault in a quick manner.
The model correction feature that has been developed during this project
will aid the modeler in finding the solution to the problem and then to
automatically solve it.

This can be compared to how programming environment like Microsoft
Visual Studio or Eclipse can be more efficient to use compared to a simple
text editor. Many programming environments will mark the faults made in
the code once a fault has been made and most often also suggest solutions
to the problem, in Visual Studio this is called IntelliSense [24]|. In a simple
text editor the developer has to compile the code in a separate compiler and
find the problem in the text once compilation is completed. In the same
way as many programming environments, MetaModelAgent with the model
correction feature will find the fault once it is created and mark it as a fault
and also suggest solutions to the fault. The model correction feature is to
MetaModelAgent what the IntelliSense is to Visual Studio.

CHAPTER 11. BENEFITS OF META-MODELING 69

11.3 Guided Model Refactoring

In a perfect environment a model would not need to be changed after it
is finished, but in real-world use a model changes during the lifetime of a
software development process. The need to have functionality for changing a
model in a safe way and in a way that will not violate the meta-model is clear.
The refactoring functionality that this project provides aid the modeler in
changing models without breaking the modeling guidelines given by the meta-
model and will be a valuable addition to MetaModelAgent. For a modeler
this will save valuable time when the need to change a model appears.

70

11.3. GUIDED MODEL REFACTORING

Chapter 12

Conclusion and Future Work

12.1 Conclusion

This project has resulted in a prototype presenting ways to use meta-models
to correct UML models. The prototype supplies refactoring guided by the
meta-model, giving the user more help during model refactoring and allowing
only refactoring that would be allowed by the guidelines expressed in the
meta-model. The prototype also produces correction suggestions to errors
found in the UML model when validating it against its’ meta-model. These
correction suggestion are based on the meta-model and can be automatically
committed using the meta-model guided refactoring that this project have
developed.

The project is mainly based on a classification of model errors that can
be found during validation of a UML model. These classifications have been
refined throughout this project and is the foundation for the meta-model
guided error correction that the prototype implements.

These results shows us that using meta-modeling of the modeling domain
to provide the user of a modeling environment with helpful tools such as
meta-model guided refactoring and error correction is possible. The results
also imply that the classification of errors is a sufficient base for providing
useful help for correcting errors in an UML model.

12.2 Future Work

The area of meta-modeling is a complex, yet interesting area with possibilities
and opportunities for more research. We divide our thoughts about future
research in three areas: research into meta-modeling and error correction in
general, further development of MetaModelAgent and new applications and

71

72 12.2. FUTURE WORK

development of the prototype that this project resulted in.

Meta-modeling is an area of research which does not seem to be as ex-
plored as it could or should be. There are lots of interesting opportunities
where meta-modeling can be used for different purposes. This project has
examined using meta-models to guide error correction of UML models and
have successfully implemented a prototype showing this functionality. We
perceive that this is an area that could be further researched, i.e. correction
of UML models using meta-models. It would also be interesting to see if
these ideas and notions would be applicable to other modeling domains and
languages. Another aspect that would contribute to this area of research is
a comparison between the notion of using meta-models to correct a model
made in a more generic modeling environment, such as done in this project,
and the notion of using meta-models to describe the domain and restricting
the modeling environment to only allow such constructs, as done in GME
and other similar modeling tools.

Regarding MetaModelAgent as a program, there are a few areas that
would be interesting to explore further to enhance the use of the tool even
more. The single most important of these would be to add support for OCL
which would allow for things such as rules and guidelines that apply to all
elements in the model and for context-dependent rules, e.g. stating that the
value of an attribute in an element must be the same as the value of the same
attribute for the parent element. There are other extensions to MetaMode-
1Agent that could be interesting as well, for example a functionality to export
and express a meta-model as guidelines in text or perhaps functionality for
using several meta-models for the same model.

The prototype that this project have resulted in would need some more
work before it can be considered a part of a product ready for the modeling
market. There are also a number of features that could be added to our
extension of MetaModelAgent that would increase the gained value even
more.

Today the meta-model is seen as a static model that describes the model-
ing framework and which guidelines should be followed. Another perspective
is to view the meta-model as a dynamic model that is allowed to change.
This could in particular be helpful when developing the meta-model. The
first step could be to let the prototype correct meta-model errors as well, or
to change the meta-model to allow for errors found in the model. One way
to interact with the program with this feature could be to create an UML
model and then use the model to create the meta-model to allow for the
constructions and structure in the model. This is an area which would need
much more research before it is possible to implement, but it is at the same
time an interesting area.

CHAPTER 12. CONCLUSION AND FUTURE WORK 73

Another feature that could extend the prototype is to let the correction
suggestions adapt to a specific user of the modeling environment. This could
allow the tool to suggest solutions that the user often chooses as the first
choice suggestion, i.e. giving priority to the suggestions that have been chosen
as solutions to a certain kind of error before. One of the reasons that this
have not been implemented in the current version of the prototype is that
the typical user will only use the error correction feature a few times for
a specific kind of error, thus not creating enough material for the tool to
adapt to. However it is an interesting notion that should be explored if the
prototype were to be further developed.

This is of course only a few of the areas where interesting research could be
made in the domain of meta-modeling, but it is those areas that the authors
feel is most important and that would be the most relevant continuation of
the research done in the span of this project.

74

12.2. FUTURE WORK

Glossary

Notation
CMM

Eclipse RCP
EMF
ER-diagrams
GME

IDE

OCL
OMG

RSA
RUP

SPICE

UML

XMI

Description
Capability Maturity Model

Eclipse Rich Client Platform
Eclipse Modeling Framework
Entity Relation Diagrams

The Generic Modeling Environment

Integrated Development Environments

Object Constraint Language
the Object Management Group

IBM Rational Software Architect
Rational Unified Process

Software Process Improvement and Capability
dEterminiation

Unified Modeling Language

XML Metadata Interchange

1)

11
49
o1
29
57
45

o8
10

o1

76

Glossary

Bibliography

1]

2]

3]

4]

5]

[6]

|7l

18]

19]

U. Assmann. Graph rewrite systems for program optimization,
University of Karlsruhe, 2000. ACM Transactions on Programming
Languages and Systems (TOPLAS).

AToMS8 Home Page, Modelling, Simulation and Design Lab, McGill
University. http://atom3.cs.mcgill.ca/, accessed on 2006-11-24.

747 Celebrating the Past, Building the Future, The Boeing Company,
2006.

http://www.boeing.com /news/feature/747evolution /747facts.html,
accessed on 2006-11-21.

D. Bradley. Practical Analysis for Refactoring, University of Illinois,
1999. http://st-www.cs.uiuc.edu/ droberts/thesis.pdf, accessed on
2006-11-23.

E. Borger and R. Stark. Abstract State Machines: A Method for
High-Level System Design and Analysis, Springer-Verlag, 2003.

F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose.
Eclipse Modeling Framework, Addison Wesley Professional, 2004.

G. Cernosek. Next-generation model-driven development, IBM
Corporation, IBM Software Group, 2004.
ftp://ftp.software.ibm.com /software /rational /web /whitepapers /rsa-
cernosek-wp.pdf, accessed on

2006-11-23.

G. Cernosek and E. Naiburg. The Value of Modeling, IBM Software
Group, 2004. ftp://ftp.software.ibm.com/software/rational /
web /whitepapers/ ValueOfModeling.pdf, accessed on 2006-11-21.

P. Chen. The Entity-Relationship Model - Toward a Unified View of
Data, 1976.

7

78 BIBLIOGRAPHY

[10] K. Compton, Y. Gurevich, J. Huggins, and W. Shen. An Automatic
Verification Tool for UML, 2000.

[11] J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and P. McCarthy.
The Java Developer’s Guide to Eclipse, 2nd Edition, Addison Wesley
Professional, 2005.

[12] J. de Lara and H. Vangheluwe. AToM3: A Tool for Multi-Formalism
and Meta-Modelling, Modelling, Simulation and Design Lab, McGill
University, 2002.

[13] J. de Lara and H. Vangheluwe. Using AToM3 as a Meta-CASE Tool,
Modelling, Simulation and Design Lab, McGill University, 2002.

[14] The Eclipse Modeling Framework Overview, 2005.

[15] Eclipse Modeling - MDT, 2006. http://www.eclipse.org/uml2/,
accessed on 2006-11-23.

[16] Eclipse Platform Technical Overview, IBM corporation, 2006.
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-
platform-whitepaper.pdf, accessed on
2006-11-23.

[17] Eclipse.org, 2006. http://www.eclipse.org/, accessed on 2006-11-23.

[18] A. Egyed. Instant Consistency Checking for the UML, Teknowledge
Corporation, 2006.

[19] A. Ledeczi et al. Composing domain-specific design environments,
IEEE Computer, pp. 44-51, November., 2001.

[20] A. Ledeczi et al. The Generic Modeling Environment, Nashville,
Vanderbilt University, 2001.

|21] D. Ohst et al. Differences between Versions of UML Diagrams,
Universitaet Siegen, 2003.

[22] E. Gamma et al. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Professional Computing
Series, 2000.

[23] H-E. Eriksson et al. UML 2 Toolkit, Wiley Publishing, Inc.,
Indianapolis, Indiana, 2004.

BIBLIOGRAPHY 79

[24] K. Getz. An Overview of Visual Basic 2005, MCW Technologies, LLC,
2005. http://msdn.microsoft.com/library/default.asp?url=/
library /en-us/dnvs05/html/vb2005verview.asp, accessed on 2006-11-24.

[25] K. Hussey. Getting Started with UML2, International Business
Machines Corp., 2006.
http://www.eclipse.org/modeling/mdt /uml2-uml/
docs/articles/GettingtartedithML2 /article.html, accessed on
2006-11-23.

[26] Data Modeling: Entity-Relationship Model, 2004.
http://www.utexas.edu/its/windows/database/datamodeling/dm/erintro.html,
accessed on 2006-11-24.

[27] L. O’Sullivan L. Briand, Y. Labiche. Impact Analysis and Change
Management of UML Models, Carleton University, Ottawa, 2003.

[28] MetaModelAgent - Meta-modeling of modeling guidelines,
Objektfabriken, 2004. Technical documentation for MetaModel Agent
supplied by Objektfabriken for this thesis.

[29] MetaModelAgent - Modeling Agent for IBM Rational Rose,
Objektfabriken AB, 2006.
http://www.objektfabriken.se/mma/metamodelagentroductsheetng.pdf,
accessed on 2006-11-23.

[30] Objektfabriken AB, 2006. http://www.objektfabriken.se/english.shtml,
accessed on 2006-11-23.

[31] UML 2.0 Infrastructure Specification, The Object Management Group,
2003. http://www.omg.org/docs/ptc/03-09-15.pdf, accessed on
2006-11-21.

[32] Unified Modeling Language: Superstructure - version 2.0, The Object
Management Group, 2005.
http://www.omg.org/docs/formal /05-07-04.pdf, accessed on
2006-11-21.

|33] Object Management Group, 2006. http://www.omg.org/, accessed on
2006-11-24.

[34] R. Paige and J. Ostroff. Metamodelling and Conformance Checking
with PVS, York University, 2001.

80 BIBLIOGRAPHY

[35] D. Schmidt. Model-Driven Engineering, Vanderbilt University, 2006.
http://www.cs.wustl.edu/Schmidt /PDF /GELpdf, accessed on
2006-11-21.

[36] W. Shen, K. Compton, and J. Huggins. A Toolset for Supporting UML
Static and Dynamic Model Checking, Springer-Verlag, 2003.

|37] H. Vangheluwe and J. de Lara. Meta-Models Are Models Too,
Proceedings of the 2002 Winter Simulation Conference, 2002.

Avdelning, Institution Datum

Division, Department Date
:le{-c\‘\vt"u%aﬁ IDA7
,4’J¢& Dept. of Computer and Information Science || 2006-12-13

581 83 LINKOPING

LINKOPINGS UNIVERSITET

Sprak Rapporttyp ISBN
Language Report category
O Svenska/Swedish O Licentiatavhandling ISRN
® Engelska/English ® Examensarbete
O Couppsats LITH-IDA-EX--06/079--SE
0O D-uppsats Serietitel och serienummer ISSN
o 0 Ovrig rapport Title of series, numbering -
]

URL f6r elektronisk version

http://www.ep.liu.se/exjobb/ida/2006/dd-d/079/

Titel

Title Meta-Model Guided Error Correction for UML Models

Forfattare Fredrik Béackstrom and Anders Ivarsson
Author

Sammanfattning
Abstract

Modeling is a complex process which is quite hard to do in a
structured and controlled way. Many companies provide a set
of guidelines for model structure, naming conventions and other
modeling rules. Using meta-models to describe these guidelines
makes it possible to check whether an UML model follows the
guidelines or not. Providing this error checking of UML models
is only one step on the way to making modeling software an even
more valuable and powerful tool.

Moreover, by providing correction suggestions and automatic
correction of these errors, we try to give the modeler as much
help as possible in creating correct UML models.

Since the area of model correction based on meta-models has not
been researched earlier, we have taken an explorative approach.
The aim of the project is to create an extension of the program
MetaModelAgent, by Objektfabriken, which is a meta-modeling
plug-in for IBM Rational Software Architect.

The thesis shows that error correction of UML models based
on meta-models is a possible way to provide automatic checking
of modeling guidelines. The developed prototype is able to give
correction suggestions and automatic correction for many types of
errors that can occur in a model.

The results imply that meta-model guided error correction tech-
niques should be further researched and developed to enhance the
functionality of existing modeling software.

Nyckelord
Keywords modeling, meta-modeling, refactoring, error correction, validation, UML

<GS UNy,
S %,
& b,

LINKOPING UNIVERSITY vﬁ}{‘
ELECTRONIC PRESS e W

LINKOPINGS UNIVERSITET

e L

W Ly
&

7o 1A

o
O

Copyright

Svenska

Detta dokument halls tillgingligt pa Internet - eller dess framtida ersdttare - under 25 ar
fran publiceringsdatum under forutsittning att inga extraordinira omstindigheter upp-
star.

Tillgang till dokumentet innebér tillstand for var och en att lisa, ladda ner, skriva
ut enstaka kopior for enskilt bruk och att anvinda det oférindrat fér ickekommersiell
forskning och fér undervisning. Overféring av upphovsriitten vid en senare tidpunkt kan
inte upphéva detta tillstind. All annan anvindning av dokumentet kriver upphovsman-
nens medgivande. For att garantera dktheten, sikerheten och tillgéngligheten finns det
16sningar av teknisk och administrativ art.

Upphovsmannens ideella ratt innefattar riatt att bli ndmnd som upphovsman i den
omfattning som god sed kriver vid anviindning av dokumentet pa ovan beskrivna sitt samt
skydd mot att dokumentet éndras eller presenteras i sdédan form eller i sddant sammanhang
som dr krankande for upphovsmannens litterdra eller konstnérliga anseende eller egenart.

For ytterligare information om Linkdping University Electronic Press se forlagets hem-
sida http://www.ep.liu.se/

English

The publishers will keep this document online on the Internet - or its possible replacement
- for a period of 25 years from the date of publication barring exceptional circumstances.

The online availability of the document implies a permanent permission for anyone to
read, to download, to print out single copies for your own use and to use it unchanged for
any non-commercial research and educational purpose. Subsequent transfers of copyright
cannot revoke this permission. All other uses of the document are conditional on the
consent of the copyright owner. The publisher has taken technical and administrative
measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement.

For additional information about the Linkdping University Electronic Press and its
procedures for publication and for assurance of document integrity, please refer to its
WWW home page: http://www.ep.liu.se/

© Fredrik Bickstrom and An-
ders Ivarsson
Link6ping, December 21, 2006

